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Preface

The goal of the male gamete is to deliver a fully intact and functioning pater-
nal genome to the oocyte. To fulfill this aim, the process of chromatin matura-
tion during spermiogenesis must be correctly completed to guarantee DNA
protection during the long journey to reach the oocyte and to properly de-
condense and form the male pronucleus after fertilization. Genetic abnor-
malities in spermatozoa can be generated in any phase of the sperm production
and life and may be due to endogenous and exogenous conditions, the latter
including in vitro manipulation for assisted reproduction and gonadotoxic
therapies. In addition, emerging studies point out the importance of the dam-
age to the sperm epigenome and address the mechanisms involved in generat-
ing it. All these abnormalities may have profound consequences for male
fertility status and even for the health of the progeny. This book presents an
updated overview of the various types of damage that may affect sperm chro-
matin. Besides the main mechanisms involved in the generation of de novo
mutations and DNA strand breaks and oxidation, two chapters of the book are
dedicated to sperm epigenome and epigenetic damage and their consequences
for the progeny. In addition, as one of the most important issues regards the
possible medical interventions to reduce or prevent sperm DNA fragmenta-
tion, one chapter faces the important aspect of pharmacological and surgical
treatments, lifestyle modifications, and prevention against exposure to envi-
ronmental and occupational toxicants.

We wish to thank all the authors for their invaluable contributions to the
book. They are all expert scientists in the field, and we appreciate their will-
ingness to offer their knowledge in this important branch of reproductive
medicine. We hope that this book will help the researchers in the topics of
reproduction and serve as a reference for medical and technical staff working
in assisted reproduction laboratories.

Florence, Italy Elisabetta Baldi
Monica Muratori
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Genetic Factors Affecting Sperm
Chromatin Structure

Mélina Blanco and Julie Cocquet

Abstract

Spermatozoa genome has unique features that
make it a fascinating field of investigation:
first, because, with oocyte genome, it can be
transmitted generation after generation; sec-
ond, because of genetic shuffling during meio-
sis, each spermatozoon is virtually unique in
terms of genetic content, with consequences
for species evolution; and finally, because its
chromatin organization is very different from
that of somatic cells or oocytes, as it is not
based on nucleosomes but on nucleoprot-
amines which confer a higher order of packag-
ing. Histone-to-protamine transition involves
many actors, such as regulators of spermatid
gene expression, components of the nuclear
envelop, histone-modifying enzymes and
readers, chaperones, histone variants, transi-
tion proteins, protamines, and certainly many
more to be discovered.

In this book chapter, we will present what
is currently known about sperm chromatin
structure and how it is established during sper-
miogenesis, with the aim to list the genetic
factors that regulate its organization.

M. Blanco - J. Cocquet (<))
INSERM, U1016, Institut Cochin, Paris, France

CNRS, UMRS8104, Paris, France

Université Paris Descartes, Sorbonne Paris Cité,
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Introduction

Spermatozoa are produced through a multi-step
process called spermatogenesis, during which
spermatogonial stem cells at the base of the semi-
niferous tubules enter the differentiation pathway
to ultimately give rise to spermatozoa, released in
the lumen of the testicular seminiferous tubules.
Spermatogenesis can be divided into three
phases: mitotic phase, meiosis, and post-meiotic
phase or spermiogenesis. During mitotic phase,
spermatogonial stem cells undergo mitotic divi-
sions to maintain the spermatogonial stem cell
pool; some of them differentiate into primary
spermatocytes. Each primary spermatocyte
undergoes DNA replication and meiotic division
to produce four haploid round spermatids. Round
spermatids then differentiate into elongated sper-
matids in a process that involves dramatic mor-
phological changes including cytoplasm removal,
acrosome biogenesis, development of flagellum
for motility, accumulation of mitochondria in the
midpiece, and extensive chromatin remodeling
that results in nuclear condensation and tran-
scriptional silencing (Russell et al. 1990). The

E. Baldi, M. Muratori (eds.), Genetic Damage in Human Spermatozoa, Advances in Experimental
Medicine and Biology 1166, https://doi.org/10.1007/978-3-030-21664-1_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21664-1_1&domain=pdf
mailto:julie.cocquet@inserm.fr

M. Blanco and J. Cocquet

post-meiotic differentiation of round spermatids
into spermatozoa is called spermiogenesis.
During this step, spermatid chromatin is exten-
sively modified and remodeled to give rise to a
chromatin organization only found in spermato-
zoa. Indeed, in all other cells (somatic cells,
female germ cells, and male germ cells until
spermatid stage), the nucleosome is the core par-
ticle of chromatin structure (Luger et al. 1997).
Histone proteins H2A, H2B, H3, and H4 assem-
ble into an octamer around which 146 base pairs
of DNA are wrapped, and this nucleosome struc-
ture occurs every 200 base pairs in the eukaryotic
genome (Mcghee and Felsenfeld 1980; Luger
etal. 1997). In sperm chromatin, the basal unit is
not the nucleosome but the nucleoprotamine,
formed of smaller, more basic proteins (richer in
arginine) than histones: the protamines. Sperm
chromatin is organized as toroids containing
~50-100kb of DNA, leading to a chromatin
structure 5-10 times more condensed than
nucleosome-based chromatin (Ward and Coffey
1991; Balhorn 2007). This tight compaction is
essential to allow DNA to fit into a nucleus that is
seven times smaller than an interphasic somatic
cell nucleus (Ward and Coffey 1991) and to pro-
tect the paternal genome from physical and
chemical damages. It is also possible that a small
nucleus is a hydrodynamic advantage that con-
fers a higher speed to spermatozoa during their
transit (Braun 2001).

Briefly, the process of replacement of histones
by protamines requires (i) opening of the histone-
based chromatin structure facilitated by histone
posttranslational modifications (PTM) — in par-
ticular histone hyperacetylation — and incorpora-
tion of histone variants, (ii) binding of
bromodomain proteins to acetyl residues and
recruitment of chromatin-remodeling proteins
and of transition proteins, (iii) formation and
repair of DNA breaks, and (iv) incorporation of
protamines leading to a protamine-based com-
pact chromatin structure. At the end of this pro-
cess, most histones have been replaced by
protamines. A small portion of histones (~1% in
mice, ~10% in humans) is retained in the sperma-
tozoa genome and contributes to the epigenetic
program of the embryo (Balhorn et al. 1977;

Gatewood et al. 1990; Hammoud et al. 2009;
Brykczynska et al. 2010; Erkek et al. 2013; Thara
et al. 2014; Carone et al. 2014; Samans et al.
2014; Royo et al. 2016; Yoshida et al. 2018;
Yamaguchi et al. 2018). [For review, see
Champroux et al. (2018).]

Studying animal models (mostly knockout
mice) and patient cases, researchers and clini-
cians have found many genes involved in histone-
to-protamine transition, and many more will
certainly be discovered. Each of them is a genetic
factor which could alter chromatin structure
when mutated. In this review, we will present
their known or predicted roles while describing
the key steps leading to the transition from a
histone-based chromatin to protamine-based
chromatin (see also Table 1.1).

Regulation of Spermatid Gene
Expression

The differentiation of round spermatids into sper-
matozoa involves profound morphological and
functional changes and requires a very specific
genetic program with thousands of genes only
expressed at that time and regulated at the tran-
scriptional and post-transcriptional levels (Steger
1999; White-Cooper and Davidson 2011; Kleene
2013). Studies of gene expression dynamic
throughout spermatogenesis have shown that this
program starts as early as the pachytene phase of
meiosis [see, for instance, da Cruz et al. (2016)
and Chen et al. (2018)].

Among the genes of which expression is acti-
vated/upregulated during spermiogenesis are
those required for histone-to-protamine transi-
tion such as histone variants, chaperones, histone-
modifying enzymes, transition proteins, and, of
course, protamines themselves. Hence, transcrip-
tion regulators which control the spermatid gene
expression program can indirectly impact on
sperm chromatin structure via deregulating key
genes of this process.

This is particularly true for regulators of
Protamine 1 (Prml) and Protamine 2 (Prm2)
gene expression: in the mouse, Prml and Prm2
are transcribed into mRNAs that can be detected
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