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    Preface   

  Emerging Trends in Cell and Gene Therapy  is meant for those who seek the golden 
thread that runs through the  fi elds of cell therapy, gene therapy, and tissue engineer-
ing, yet have found other books too specialized to do so. This book aims to arm 
basic scientists and clinicians with this golden thread so they are better positioned 
to address the debilitating diseases presently plaguing mankind. 

 Cell and gene therapies are promising approaches for treating genetic and 
acquired diseases. To date, numerous biological barriers and ethical issues have 
limited their clinical translation. Nonetheless, active research in cell and gene ther-
apy in both academia and industry is continually providing fresh insight that prom-
ises to bring these potentially potent therapies to our doorstep. While there are 
several books already available covering cell and gene therapy, most of these deal 
with both subject areas separately.    Furthermore, many of these books only address 
various aspects such as fundamental principles and delivery or application of cell or 
gene therapy. This current situation has the tendency of leaving the interested read-
ers with a fragmented understanding regarding these two areas and the  fl exible and 
powerful therapeutic platforms which can be developed when various aspects of 
cell and gene therapy are combined. Hence, there is a great demand from the 
scienti fi c community for a book providing a holistic perspective on novel and 
important areas at the interface of cell and gene therapy, as well as potential syner-
gistic therapeutic bene fi t obtained when both therapeutic approaches are combined 
with delivery strategies. Here is what this book offers you. 

 First, it is broadly organized to provide critical and in-depth review in the follow-
ing three key areas: (1) basic biological aspects of stem cell sources, differentiation, 
and engineering, (2) application of stem cells and gene therapy to speci fi c human 
disease, and (3) utilization of biomaterials and stem cells in regenerative medicine. 
This arrangement allows the readers to observe the common theme involved in the 
integration of cell, gene therapy, and tissue engineering and how it can be used to 
guide future research. 

 Second, this book covers a range of topics including recent advances in embry-
onic stem cell engineering towards tailored lineage differentiation, the human amni-
otic membrane as a potential tissue and cell source for cell therapy and regenerative 
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medicine, emerging strategies for the selection of vectors, delivery techniques and 
therapeutic targets for gene transfer to the heart, application of micro fl uidics to 
study stem cell dynamics, biomimetic multiscale topography for cell alignment, and 
spinal cord repair by means of tissue engineered scaffolds. The contents of  Emerging 
Trends in Cell and Gene Therapy  are contributed by leading international research 
and clinical experts and therefore represent current understanding, practice, and 
state of the  fi elds of cell therapy, gene therapy, and tissue engineering. Hence, this 
book offers, in a single volume, the required comprehensive understanding regard-
ing the connecting thread running through cell therapy, gene therapy, and tissue 
engineering for veterans and newcomers to the  fi eld.   
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  Abstract   Stem cells represent one of the most promising areas in biological and 
medical research for the treatment of vascular disease; by taking advantage of their 
unique ability to undergo unlimited self-renewal and to differentiate into speci fi c 
cell lineages, they potentially provide an unlimited cell source for vascular tissue 
repair and for the construction of engineered vessels. Emerging evidence indicates 
that the mobilisation and recruitment of circulating or tissue-resident stem/progeni-
tor cells give rise to smooth muscle cells (SMCs) which participate in numerous 
cardiovascular diseases such as atherosclerosis. Understanding the regulatory 
mechanisms that control smooth muscle differentiation and their recruitment from 
vascular progenitors is essential for stem cell therapy for vascular diseases and 
regenerative medicine. In this chapter, we examine the differentiation process of 
SMCs from pluripotent stem cells, highlighting the environmental cues and signal-
ling pathways that control phenotypic modulation within the vasculature. We high-
light the potential targets for promoting/inhibiting SMC differentiation and discuss 
their application for vessel-tissue engineering and treatment of cardiovascular 
pathologies.  

  Keywords   Stem cell  •  Stem cell differentiation  •  Atherosclerosis  •  Epigenetic 
modi fi cation  •  MicroRNA      
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    Chapter 1   
 The Mechanism of Stem Cell Differentiation 
into Smooth Muscle Cells       

      Russell   Simpson    and    Qingbo   Xu         



2 R. Simpson and Q. Xu

    1.1   Introduction 

 Blood vessels are composed mainly of two types of cells, endothelial cells that line 
the lumen and vascular smooth muscle cells (SMCs) that form the structure of the 
media  [  1  ] . Vascular SMCs refers to the particular type of smooth muscle found 
within and composing the majority of the wall of blood vessels. In addition to pro-
viding structural integrity within the vasculature, the main role of SMC is to regu-
late blood  fl ow and pressure in blood vessels, a mechanism that is responsible for 
the redistribution of the blood within the body to areas where it is needed. Vascular 
smooth muscle can contract or relax through highly regulated contractile machin-
ery which in the differentiated cell is composed of speci fi c contractile proteins. A 
host of human diseases including cancer, atherosclerosis, hypertension and resteno-
sis  [  2,   3  ]  can be directly attributed in part to dysfunctionality of SMCs. Deciphering 
the cellular and molecular mechanisms which control the differentiation and phe-
notypic plasticity of SMCs is vital to develop new strategies to prevent and amelio-
rate these diseases particularly those effecting vasculogenesis. The limited lifespan 
of adult vascular SMCs and the dif fi culty in obtaining adult and mature arteries 
from patients present limitations for constructing autologous human vessels in vitro 
to regenerate a diseased adult cardiovascular system. Finding alternative cell 
sources to obtain large amounts of functional SMCs for development of vascular 
tissue engineering has generated much interest and research in the clinical use of 
stem cells. 

 Stem cells are characterised by the unique capacity for unlimited growth and 
self-renewal whilst maintaining the potential to differentiate into specialised cells. 
Generally stem cells can be divided into embryonic stem cells and tissue-resident or 
adult stem cells  [  4,   5  ] . Aside from their origin, the major distinction between differ-
ent forms of stem cells is their “pluripotency”, that is to say their ability to develop 
into any cell type from the three germ layers endoderm (interior stomach lining, 
gastrointestinal tract, lungs), mesoderm (muscle, bone, blood, urogenital) or ecto-
derm (epidermal tissues and nervous system)  [  6–  9  ] . Embryonic stem cells (ESCs) 
are the pluripotent derivatives of the inner cell mass of blastocytes, hollow sphere-
shaped embryos of 200–250 cells  [  5,   10  ] . They are the most promising pluripotent 
stem cell sources and give rise to all types of mature tissue cells in the human body 
 [  8,   9  ] . The isolation of the  fi rst ESCs from mouse embryos  [  11  ]  led to the revolu-
tionary knockout mouse technology which is still widely used today  [  12  ] . 
Alternatively, adult stem cells are derived from blood, bone marrow, vessel wall and 
other tissues, but unlike ESCs, they display variable capacities for differentiation 
and are not pluripotent in the true sense of the word  [  13  ] . Other stem cells of non-
human sources are embryonic germ cells derived from the gonad ridge of primor-
dial germ cells and recently discovered post-implantation epiblast-derived stem 
cells in mouse  [  14,   15  ] . Mesoangioblasts have also been characterised recently as 
stem cells that can differentiate into SMC  [  16,   17  ] . 

 Elucidating the underlying mechanisms for stem cell differentiation has been a 
considerable challenge for researchers. Yamamoto et al. demonstrated that mechan-
ical force produced by  fl uid  fl ow can induce ESC differentiation into endothelial 
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cells  [  18  ] , whilst Wang et al.  [  19  ]  revealed that shear stress induced and suppressed 
angiogenic growth factors and SMC-associated growth factors, respectively. In 
addition to shear stress, growth factors and cytokines have been shown to directly 
regulate ESC differentiation  [  13  ] , and the expression levels of cytokines and growth 
factors are likewise altered during differentiation of mesenchymal stem cells, for 
example  [  20  ] . Coculture of mouse neural stem cells with human endothelial-like 
cells gives rise to neural stem cells that have the potential to form capillary networks 
 [  21  ] , highlighting the role of cytokines in stem cell differentiation. 

 In the last several years, a major achievement has been the ability to differentiate 
ESCs into vascular endothelial cells, SMCs and cardiomyocytes in vitro, providing 
not only an understanding of the development process but also a potential source for 
cardiovascular tissue repair  [  22  ] . The limited lifespan of adult vascular smooth mus-
cle cells and dif fi culty in sourcing them present challenges for constructing human 
vessels in vitro to replace diseased or injured vasculature. The progress of SMC dif-
ferentiation from stem cells has led to increased interest in their clinical potential to 
create tissue-engineered vascular grafts to treat terminal cardiovascular diseases. 
Furthermore, accumulating evidence indicates that the mobilisation and recruitment 
of circulating or tissue-resident progenitor cells that give rise to SMCs can partici-
pate in many vascular diseases including atherosclerosis, angioplasty restenosis and 
neointima hyperplasia after arterial injury and transplant arteriosclerosis  [  5,   23,   24  ] . 
Hence, in recent years, much effort has been made to understand the regulatory 
mechanisms which promote stem cell and progenitor cell differentiation towards 
SMC lineage for improving current therapeutic avenues for cardiovascular disease 
and vascular tissue engineering.  

    1.2   Smooth Muscle Cell Phenotypic Switching 
in Atherosclerosis 

 Arterial SMCs normally reside in the arterial wall in a differentiated contractile 
state where they provide structural support to the vasculature and control blood 
pressure and blood  fl ow through highly regulated contractile mechanisms. 
Differentiated SMCs in adult blood vessels proliferate at an extremely low rate, 
exhibit low synthetic activity and express a unique repertoire of ion channels, sig-
nalling molecules and contractile proteins required for the cell’s contractile function 
 [  25,   26  ] . Differentiated SMCs express a variety of SMC-speci fi c contractile and 
contractile-associated proteins that contribute to these functions including 
SM-myosin heavy chain  [  27,   28  ] , SM22 a   [  29  ] , calponin  [  29,   30  ]  and SM  a -actin 
 [  3,   31,   32  ] . Although this repertoire is speci fi cally expressed in the fully differenti-
ated SMC, most of these markers are expressed at least transiently in other cells 
during repair or pathological conditions  [  33  ] , making identi fi cation of mature SMCs 
problematic. 

 Differentiation of SMCs is necessary for maturation and remodelling of the vas-
culature  [  34–  36  ] , and in addition, they secrete important components of the 
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 extracellular matrix (ECM) such as elastin and collagen, which assist in regulating 
mechanical properties of blood vessels  [  37,   38  ] . Unlike the cardiac and skeletal 
muscle cells, adult SMCs demonstrate remarkable plasticity, and in response to vas-
cular injury, during remodelling to changes in blood  fl ow or in different disease 
states, SMCs in the arterial wall can undergo profound and reversible phenotypic 
alterations, a process called “phenotypic switching”  [  39  ]  (reviewed by Owens  [  25  ] ). 
These dedifferentiated or “synthetic” SMCs are characterised by decreased SMC 
differentiation marker gene expression and increased SMC proliferation, migration, 
ECM synthesis  [  40,   41  ] , contractile SMCs and can synthesise up to 25–46 times 
more collagen  [  42,   43  ]  probably as a result of increased responsiveness to growth 
factors. Differentiation and phenotypic modulation of SMCs are controlled by a 
dynamic array of extrinsic cues. The fact that vascular SMCs are not terminally dif-
ferentiated and retain the ability to modulate their phenotype to changing environ-
mental cues likely evolved in higher organisms as it conferred a survival mechanism 
for vascular repair. Paradoxically, an unfortunate consequence of this plasticity is 
that it allows rapid adaptation to  fl uctuating environmental cues during develop-
ment and progression of vascular diseases; asthma, hypertension, cancer and devel-
opment of irreversible atherosclerotic lesions have all been shown to be attributed in 
part to phenotypic switching  [  39,   40,   44  ] . Hence, because it is believed that transi-
tion to the “synthetic” state facilitates many of the pathogenic roles of SMCs, an 
understanding of the factors regulating SMC differentiation is paramount for treat-
ment strategies  [  45  ] . Whilst much is known regarding factors and mechanisms that 
control SMC differentiation in cultured cells, we still have an incomplete knowl-
edge of the transcription regulatory mechanisms that ultimately regulate SMC phe-
notypic switching in vivo, and this is by no means made easier by the plasticity of 
this cell type or the fact that SMCs derive from multiple precursors throughout the 
embryo  [  46  ] . Unlike cardiac and skeletal muscle cells, during embryonic develop-
ment, SMCs are derived from numerous distinct populations of precursor cells. 
Coronary artery SMCs in the vasculature, for example, are derived from proepicar-
dial cells, whereas the aortic arch and thoracic aorta contain SMCs which have 
originated from the neural crest  [  46  ] . It is this origin-associated diversity which may 
account for the distinct structural and functional properties analogous with SMCs 
 [  46  ]  such as the variant expression of contractile proteins with SMCs from various 
tissues  [  47,   48  ] . 

 A major challenge has been to elucidate not only the environmental cues that 
regulate phenotypic switching in SMCs but how these processes become disrupted 
in disease states. A further complexity is that the precise nature of phenotypic 
switching is highly variable in these different diseases, with changes in atheroscle-
rosis involving profound changes in SMC morphology, function and gene expres-
sion patterns, compared with the much more subtle changes in contractility 
associated with asthma and hypertension  [  40  ] , for example. Moreover, the precise 
role of the SMC varies greatly depending on the stage of these diseases, and this is 
best illustrated in atherosclerosis which is probably the best-known example of a 
disease in which SMC phenotype switching plays a critical role. 
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 Arteriosclerosis is an overlying term covering all pathologies in which arteries 
become harder and less elastic. Arteriosclerosis is characterised by SMC hyperpla-
sia or hypertrophy and matrix protein accumulation in the intima or media or both, 
with or without lipid deposition, resulting in thickening and stiffness of the arterial 
wall  [  49  ] . Arteriosclerosis includes spontaneous atherosclerosis, accelerated (trans-
plant) arteriosclerosis, vein graft atherosclerosis and restenosis after percutaneous 
transluminal coronary angioplasty  [  50  ] . Atherosclerosis, the most common form of 
arteriosclerosis, is a disease responsible for over 55 % of all deaths in Western 
civilisation  [  51  ] . In    atherosclerosis lesions, the three major cell components are the 
SMCs, which are the most abundant cell type around the necrotic core, and the 
lymphocytes (intracellular and extracellular lipid)  [  52  ] . It has been estimated that up 
to 70 % of lesion development mass is made up of SMCs or SMC products such as 
ECM  [  25,   53  ] . Atherosclerosis is a progressive disease characterised by the forma-
tion of atheromatous plaques within the walls of large- and medium-sized arteries. 
Early lesions, otherwise known as fatty streaks, may occur in the intima as early as 
childhood and develop into plaques with a lipid-rich core within the central portion 
of the thickened intima in adults. The characteristic feature of the advanced athero-
sclerotic plaque is irregular thickening of the arterial intima by in fl ammatory cells, 
extracellular lipid (atheroma) and  fi brous tissue (sclerosis)  [  54  ] . A large part of the 
lesions comprise seemingly inert and acellular  fi brous tissue, but there is often a 
distinct and highly cellular  fi brous cap which arises from the migration and prolif-
eration of vascular smooth muscle cells and from matrix deposition  [  53  ] . The  fi brous 
cap undoubtedly contributes something to luminal encroachment, but its impor-
tance has recently been emphasised as a strong determinant of the likelihood of 
plaque rupture at later stages. Rupture leads to the release of lipids which results in 
a signal cascade that leads to thrombus formation  [  53,   55–  57  ] , thereby contributing 
to arterial occlusions, coronary disease, myocardial infarction and stroke. It is now 
known that within the  fi brous cap of advanced atherosclerotic plaques, SMCs may 
play either a bene fi cial role or detrimental role in determining plaque stability, 
depending on the cells’ phenotypic state  [  58,   59  ] . In their synthetic state, SMCs are 
the primary cells responsible for stabilising  fi brous caps by virtue of their prolifera-
tion and production of extracellular proteins. However, in response to environmen-
tal signals that are poorly characterised, these cells can become apoptotic and 
activate expression of matrix metalloproteinases and in fl ammatory mediators that 
can act together in promoting end-stage disease events such as plaque rupture and 
thrombosis  [  58,   59  ] . It had been argued that the accumulation of smooth muscle 
cells in the tunica intima was a negative feature of plaque progression  [  51,   60  ] . 
Recently, however, pathologists and cardiologists have come to see the formation 
and survival of a  fi brous cap consisting of smooth muscle cells and connective tis-
sue as a good thing, as part of an attempt by the vessel wall to encapsulate the toxic 
products accumulating in the necrotic core  [  61  ] . It is known that medial SMCs and 
those within arteriosclerotic lesions differ dramatically and there has been extensive 
work made in an attempt to study this phenotypic switching between normal and 
diseased states  [  62,   63  ] . During formation of arteriosclerosis, it is believed that 
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before SMCs can migrate from the media into intima, a transition in their phenotype 
is required  [  64  ] . Medial non-proliferating SMCs have a contractile phenotype which 
they need to maintain vascular tone. When SMCs proliferate, they take on a syn-
thetic phenotype which is associated with modulated gene expression and genera-
tion of proteins. The prevailing theory for the pathogenesis of arteriosclerosis 
suggests that during atherosclerotic plaque or neointima formation or both, SMCs 
from the media migrate to the intima and assume the synthetic phenotype, prolifer-
ate, produce extracellular matrix and participate in  fi brous cap formation  [  51,   53  ] . 
According to this view, intimal SMCs in transplant arteriosclerotic lesions should 
originate from the donor vessels; however, there is now growing evidence to support 
the recipient origin of SMCs in neointimal lesions in animal models  [  65–  68  ] , whilst 
it has been argued that SMCs in human transplant arteriosclerosis are derived from 
both donors and recipients  [  5  ] . 

 There is now growing evidence that stem cells and smooth muscle progenitor 
cells also contribute to arteriosclerosis by differentiating into SMCs in the intima 
 [  65,   67–  72  ] . Derivation from these different sources may be the main reason as to 
why SMCs in arteriosclerotic lesions display a diversity of phenotypes, characteris-
tics and behaviours. Since this is an important issue for understanding the pathogen-
esis of arteriosclerosis, the sections that follow concentrate on smooth muscle 
origins and the mechanism of SMC differentiation from stem cells.  

    1.3   Smooth Muscle Progenitors 

 It is now appreciated that adult stem cells are present in a host of tissues and organs 
(Fig.  1.1 )  [  73,   74  ] . SMC accumulation in the intima is a key event in the develop-
ment of arteriosclerosis  [  75  ] , and as described above, the most accepted theory had 
been that the majority of intimal SMC are derived from the media of the vessel 
 [  76  ] . This long-standing dogma is being revisited following the discovery that dif-
ferent sources of cells may be responsible for smooth muscle accumulation in ath-
erosclerosis. Emerging evidence has demonstrated the existence of a population of 
vascular stem/progenitor cells in a variety of tissues including circulating bone 
marrow-derived stem cells  [  67,   77  ]  and/or resident Sca1 +  adventitial cells  [  74,   78  ] . 
There is also evidence demonstrating that SMC or SMC-like cells may be derived 
from a variety of sources, including transdifferentiation of endothelial cells  [  79  ]  
and adventitial  fi broblasts  [  80–  82  ]  as well as medial SMC  [  83  ] . Speci fi cally, bone 
marrow- and vessel wall-derived progenitors have been shown to have the ability 
to differentiate into SMCs which can participate in angiogenesis and vascular 
remodelling  [  84–  88  ] . Furthermore, these cells may be directly or indirectly involved 
in cardiovascular disease development  [  89,   90  ]  and participate in atherosclerotic 
plaque development and neointima formation  [  74,   91–  95  ] . The lack of de fi nitive 
SMC lineage-tracing studies in the context of atherosclerosis and problems in pin-
pointing phenotypically modulated SMC within lesions that have attenuated SMC 
marker genes and/or induced expression of markers of alternative cell types, that is, 
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macrophages, raise major questions regarding the contributions of SMC at all 
stages of atherogenesis. The precise frequency and roles of progenitor cell-derived 
SMCs in arteriosclerosis remain uncertain, but it is however widely agreed that 
progenitors can contribute to SMC accumulation in lesions, depending on the dif-
ferential degrees of vessel damage  [  1  ] . Yet, there is still uncertainty about the ori-
gin and residency sites of smooth muscle progenitors in vivo, and given the innate 
heterogeneity of SMCs, it is not surprising that there is con fl icting data. It was 
demonstrated that hematopoietic stem cells could give rise to arterial SMCs after 
injection into the border zone of experimental myocardial infarcts in mice  [  69  ] . In 
native atherosclerosis, Sata et al. demonstrated that SMCs in atherosclerotic plaques 
were shown to originate from bone marrow progenitors, implying that SMCs were 
derived from hematopoietic stem cells  [  67  ] . One group showed the majority of 
neointimal SMCs within plaques of experimental atherosclerosis in sex-matched 
chimeric scenarios and transgenic bone marrow transplant settings are derived 
from the bone marrow  [  66  ] . Other investigators failed to identify bone marrow-
derived SMCs in atherosclerosis  [  68,   83,   96  ] . Early on, Benditt and Benditt  [  97  ]  

Adipose

BM Spleen

Liver

Stem cell
pool

in blood
Aorta

Intestine

SMP EPC

TA

  Fig. 1.1    Stem/progenitor cell origins. Stem/progenitor cells could be released from arterial wall, 
adipose tissue, bone marrow ( BM ), spleen, liver and intestine into blood, where they form circulat-
ing stem cell pool in blood. Smooth muscle progenitors ( SMPs ) and endothelial progenitor cells 
( EPC ) accumulate within the intima, where they differentiate into SMCs contributing to the lesion 
formation of arteriosclerosis       
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