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v

 Rapid evolutions in vector technologies and identifi cation of key molecular targets have 
facilitated the use of gene therapy as a vital approach for treating cardiovascular diseases. In 
the past decade, there has been substantial progress in clinical translation of cardiac gene 
therapy. Nevertheless, recent early clinical trials using gene therapy as a therapeutic approach 
to improve heart failure have shown neutral results, and the diffi culty of transferring the 
genes to human hearts has become ever more recognized. Effi cient, cardiac-specifi c, and 
safe vectors, as well as refi ned vector delivery methods, are key for successful cardiac gene 
transfer and eventually for improving patients’ outcomes. Newer vectors and more effi cient 
vector delivery methods have the potential to dramatically improve gene transduction effi -
cacy, while novel gene manipulation techniques enforce the therapeutic power and broaden 
disease targets. 

 The aim of this book is to provide methodological information on cardiac gene delivery 
from classic to state-of-the-art technologies and techniques. Detailed and practical proto-
cols described in this volume will be valuable tools for molecular biologists and physiolo-
gists in the cardiology fi eld to conduct cardiac gene transfer research, which will ultimately 
lead to further advancements in the fi eld. 

 I thank all expert authors for their dedication in describing step-by-step methodologies 
that will undoubtedly lead to successful cardiac gene therapy. I am very grateful to 
Dr. Roger J. Hajjar (Icahn School of Medicine at Mount Sinai) for assisting me with the 
organization of the contents and also for contributing a number of chapters himself. Lastly, 
I would like to thank John M. Walker, the series editor, who provided me with this oppor-
tunity and guiding the volume’s preparation process. We hope that the readers fi nd  Cardiac 
Gene Therapy: Methods and Protocols  to be a useful reference for conducting and improving 
their projects.  

  New York, NY, USA     Kiyotake     Ishikawa     

  Pref ace   
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    Chapter 1   

 Current Methods in Cardiac Gene Therapy: Overview                     

     Kiyotake     Ishikawa     and     Roger     J.     Hajjar       

  Abstract 

   During the last decade, there has been a signifi cant progress toward clinical translation in the fi eld of car-
diac gene therapy based on extensive preclinical data. However, despite encouraging positive results in 
early phase clinical trials, more recent larger trials reported only neutral results. Nevertheless, the fi eld has 
gained important knowledge from these trials and is leading to the development of more cardiotropic vec-
tors and improved delivery systems. It has become more evident that humans are more resistant to thera-
peutic transgene expression compared to experimental animals and thus refi nement in gene delivery tools 
and methods are essential for future success. We provide an overview of the current status of cardiac gene 
therapy focusing on gene delivery tools and methods. Newer technologies, devices, and approaches will 
undoubtedly lead to more promising clinical results in the near future.  

  Key words     Cardiac gene therapy  ,   Heart failure  ,   Adeno-associated vectors  ,   Gene delivery  ,   Surgical 
delivery  ,   Percutaneous delivery  ,   Cardiotropic  ,   Promoters  

1      Introduction 

 From the time I wrote a chapter in this book series in 2003 describ-
ing the cardiac gene transfer methods in rodents [ 1 ], there has 
been tremendous progress in the cardiac gene therapy fi eld towards 
clinical translation. After an early disappointment from the neutral 
phase II–III angiogenic gene therapy trials using plasmid DNA 
and adenoviral vectors [ 2 ], the fi eld has quickly shifted to more 
effi cient vectors and delivery methods to improve gene transfer 
effi cacy. Application of recombinant adeno-associated virus (rAAV) 
for cardiac gene delivery is a representative technological advance 
that enables long-term, effi cient, and homogeneous cardiac gene 
transduction. Numbers of preclinical studies have demonstrated 
effi cient transgene expression and therapeutic effi cacy using this 
vector [ 3 ,  4 ] which led to the initiation of early phase clinical trials 
[ 5 ]. However, after much promise in these early phase trials [ 5 – 7 ], 
a more recent larger trial reported only neutral results [ 8 ]. Similarly, 
another phase II clinical gene therapy trial utilizing transcatheter 
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endocardial injection of plasmid DNA failed to meet the primary 
effi cacy endpoint [ 9 ]. These results will delay the application of 
cardiac gene therapy in daily clinical practice; however, we have 
gained important knowledge to move forward. Cardiac samples 
obtained from patients who underwent cardiac transplantation 
after the rAAV gene therapy has informed us that the vectors 
indeed transduce the human heart [ 6 ]. Notwithstanding, the viral 
uptake within the myocardium was much lower in humans com-
pared to animal studies which only corresponds to less than 1 % of 
cardiomyocytes being infected [ 10 ]. These results direct us to 
refi ne our methods of cardiac gene transfer including a search for 
better vectors, more robust delivery systems and novel targets. 
This book has a timely focus on these methodologies to further 
improve cardiac gene transduction, and covers various novel tech-
niques to produce better vectors that specifi cally and effi ciently tar-
get the heart. In this chapter, we provide an overview of currently 
available cardiac gene delivery vectors and delivery methods.  

2    Vectors 

 One of the most important factors for successful gene therapy is 
the choice of  vectors  . Vectors determine the effi ciency of transduc-
tion, tropism to the targeted tissues, degree of infl ammation, and 
length of transgene expression. Despite the progress in the identi-
fi cation of promising targets for the treatment of a number of car-
diovascular diseases, the targeted delivery of therapeutic nucleic 
acids yet remains a formidable hurdle especially in advanced mam-
malians. Nonetheless, over the past years, considerable advances 
have been made in developing and improving several vector plat-
forms. Broadly, these vectors can be classifi ed into two groups: 
nonviral vectors and recombinant viral vectors. Each of these vec-
tor systems has its own set of advantages and disadvantages, and we 
will briefl y discuss the main vectors currently employed in cardio-
vascular gene therapy. 

   Naked plasmid  DNA   has been the predominant vector used in the 
previous cardiac gene transfer trials that have employed nonviral 
vectors, with only a few trials using lipofection [ 11 ]. The major 
advantages of plasmid DNA include (1) the ease of large scale pro-
duction, (2) the near absence of a DNA size limit, and (3) the lim-
ited innate, cellular and humoral immune response. The lack of a 
signifi cant humoral immune response against the vector is a great 
advantage that allows repeat vector administration, which is one of 
the major limitations of viral vectors. However, repeat vector 
administration comes with an appreciable risk of serious adverse 
events due to the administration procedure that often requires inva-
sive procedures. Unfortunately, the Achilles heel of plasmid DNA 

2.1  Nonviral Gene 
Delivery

Kiyotake Ishikawa and Roger J. Hajjar
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as a gene delivery vehicle remains the low transfection effi ciencies 
[ 12 ]. Innate immune response to plasmid DNA is considered mod-
erate and can also reduce transfection effi ciency [ 13 ]. These limita-
tions clearly indicate the necessity of a major breakthrough to 
improve transfection effi ciency to fully realize the potential of plas-
mid DNA gene transfer. 

 Recently, promising  new   nonviral gene transfer methods have 
emerged. These approaches include modifi ed mRNA [ 14 ] 
(modRNAs) and exosome [ 15 ] mediated gene delivery. The use of 
modifi ed mRNAs has two main advantages: (1) ModRNAs, unlike 
unmodifi ed nucleic acids, do not bind to Toll-like receptors [ 16 ], 
which could trigger apoptosis of the transfected cells. As a result, 
modRNAs can transfect the cells very effi ciently. (2) Because 
mRNAs are translated in the cytoplasm, they do not need to be 
imported into the nucleus for transgene expression, which poses a 
formidable hurdle for transfection with DNA. ModRNAs trigger 
high-level transgene expression, and unsurprisingly, transgene 
expression is relatively short-lived, 2–6 days [ 14 ,  17 ]. Depending 
on the application, this short, pulse-like expression can be either 
disadvantageous or benefi cial. For example, whereas the short- 
term expression of proteins defi cient in inherited cardiomyopathies 
would most likely have no long-term therapeutic benefi t, the 
short-term expression of, for instance, growth factors and stem cell 
recruiting factors [ 18 ] might not only be therapeutically optimal 
but also safer. Recently, Turnbull et al. have shown that modRNA 
mixed with nanoparticles delivered by direct injection into the 
myocardium or by intracoronary fashion can induce expression as 
fast as 20 min following delivery in rodent and in pig hearts [ 19 ]. 
Thus, for short-term and rapid expression, modRNA  offers   a safe 
and reliable delivery system to the myocardium.  

   Recombinant  viral vectors   are often very effi cient in delivering 
therapeutic genetic material to the targeted cells compared to non-
viral vectors. They all have their own characteristics and appropri-
ate vector selection is one of the key components for successful 
cardiac gene transfer. 

 To date, the majority of virus-mediated cardiovascular clinical 
gene therapy trials have used adenoviral vectors. This vector has 
the advantage of transducing a broad array of cell types, including 
cardiomyocytes, with a high transgene expression, although tran-
sient. However, adenoviral vectors do not have cardiac tropism and 
the transgene expression cannot be restricted to certain tissues or 
cell types unless targeted specifi cally. The most signifi cant limita-
tion of adenoviruses for cardiovascular gene therapy is however, 
that they trigger a strong immune response [ 20 ,  21 ]. The so-called 
fi rst-generation adenoviral vectors, which are defi cient in only one 
viral gene (usually E1), trigger a strong cellular immune response 
[ 21 ], presumably as a result of the expression of adenoviral 

2.2  Viral Vectors
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proteins. However, even after removing most of the viral gene, i.e., 
gutless adenoviral vectors, a strong innate immune response against 
the adenoviral capsid was triggered [ 22 ], a risk not to be taken 
lightly in cardiac gene therapy. 

 Lenti viral vectors   have been used experimentally in preclinical 
cardiac gene therapy studies [ 23 ]. In contrast to γ-retroviral vectors, 
lentiviral vectors can transduce nondividing cells such as cardiomyo-
cytes. Moreover, long-term expression can be achieved in both 
nondividing and dividing cells, because they integrate their genetic 
material into the host genome. The immune response is in general 
moderate [ 20 ], but similar to adenoviral vectors, lentiviral vectors 
have no specifi c tropism to cells of the cardiovascular system, which 
likely will require intramyocardial injection as a vector delivery 
method when targeting cardiac cells. Moreover, lentiviral vectors 
can cause insertional mutagenesis through the random integration 
of DNA into the host genome, raising concerns for the aberrant 
expression of important genes and to tumorigenesis. These limita-
tions have restricted lentivirus use as a vector for in vivo cardiac 
gene transfer, and it has been mainly used in ex vivo gene transfer to 
reprogram cells or to induce cardiac progeny in stem cells [ 23 ]. 

 AAVs are one of the  most   promising gene delivery platforms 
for cardiac gene therapy. AAVs are small, non-enveloped, single- 
stranded DNA viruses that are nonpathogenic in general. Both 
dividing and nondividing cells can be transduced by rAAVs and 
they can trigger long-term transgene expression even in the absence 
of genome integration in postmitotic tissues, such as the myocar-
dium. One of the main advantages of rAAV vectors for cardiac 
gene therapy is that multiple AAV serotypes display natural tropism 
for cardiomyocytes [ 24 ,  25 ]. In small animal models of cardiac 
diseases, this allows the systemic administration of rAAVs to effi -
ciently transduce the myocardium. Unfortunately, the cardiac tro-
pism of present AAV serotypes and variants is not perfect. As a 
result, in large animal models—and most importantly in humans—
rAAVs carrying therapeutic genes need to be delivered regionally. 
The cellular immune response against rAAVs is not very strong. In 
clinical trials using the hepatotropic AAV serotype 8 to deliver fac-
tor IX to treat hemophilia B, two patients experienced a transient 
transaminase increase, putatively as a result of an anti-AAV immune 
response [ 26 ], but the liver transaminase levels rapidly returned to 
normal after a short regimen of immune suppression. Interestingly, 
a cellular immune response has not been detected in more than 
300 patients in the CUPID 1 and 2 trials [ 7 ]. However, despite the 
limited cellular immune response against rAAVs, the presence of 
antecedent neutralizing antibodies emerged as a signifi cant obsta-
cle to the broad application of AAV gene therapy. Preexisting neu-
tralizing antibodies against the naturally occurring serotypes, 
presumably a result of a prior infection with wild-type AAVs, can 
signifi cantly reduce the transgene effi cacy. In fact, more than half 
the patients (up to 80 % in certain regions) who could have been 

Kiyotake Ishikawa and Roger J. Hajjar
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