


Cancer Genetics and Genomics for Personalized Medicine

edited by II-Jin Kim

Cancer Genetics and Genomics for Personalized Medicine

Cancer Genetics and Genomics for Personalized Medicine

edited by II-Jin Kim

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Cancer Genetics and Genomics for Personalized Medicine

Copyright © 2017 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4669-87-0 (Hardcover) ISBN 978-1-315-36476-6 (eBook)

Printed in the USA

Contents

Pr	reface	2	xiii						
1	1 Personalized Medicine for Cancer: Introduction and								
	Ove	rview of the Book	1						
	II-Jir	n Kim and David Jablons							
	1.1	Changing the Treatment Paradigm for Cancer	1						
	1.2	Companion Diagnostics and New Sequencing							
		Technologies	3						
	1.3	Early Detection of Cancer and Tumor							
		Recurrence Monitoring: Circulating Tumor							
		Cell (CTC) and Circulating Tumor DNA							
		(ctDNA)	5						
	1.4	Cancer Animal (Mouse) Models and							
		Microenvironment for Personalized Medicine	6						
	1.5 Personalized Immunotherapy								
	1.6 Hereditary Cancer Syndromes and Potential								
		Treatment	7						
	1.7	Future Directions	8						
2	Pers	sonalized Medicine in Lung Cancer	15						
	Dan	iela Morales-Espinosa, Silvia García-Román,							
	and	Rafael Rosell							
	2.1	Introduction	15						
		2.1.1 Predictive Models	16						
		2.1.2 The Molecular Diagnostics Approach	17						
		2.1.3 Conventional Chemotherapy	19						
		2.1.3.1 Cisplatin	19						
		2.1.3.2 Pemetrexed	20						

			2.1.3.3	Gemcitabine	21
			2.1.3.4	Taxanes	22
	2.2	Genet	ic Altera	tions and New Potential Targets	23
				or Tyrosine Kinases	24
			2.2.1.1	EGFR inhibitors (first and second	
				generation)	24
			2.2.1.2	ALK rearrangement (first and second	
				generation)	25
			2.2.1.3	ROS1	26
		2.2.2	Epigene	etic Factors	27
		2.2.3	Transcr	iption Factors	30
		2.2.4	Repurp	osing Drugs	32
	2.3	Concl	usions		33
3	Gen	ome-Ba	ased Pers	sonalized Medicine in Liver Cancer	39
	Jae-	Jun Shii	m and Ju-	-Seog Lee	
	3.1	Introd	luction		39
		3.1.1	Epidem	iology of Liver Cancer	39
		3.1.2	Clinical	Characteristics of Liver Cancer	40
	3.2	Why I	Personali	ized Medicine is Important in Patients	
		with I	Liver Can	icer?	41
	3.3	Metho	ods and H	Results of Genomic Profiling of Liver	
		Cance	er		42
		3.3.1	Compai	rative Genomic Hybridization (CGH)	42
		3.3.2	Microai	rray-Based Technology	43
		3.3.3	Next-Ge	eneration Sequencing	44
		3.3.4	Integro	mics: Integration of Multiple -omic Data	45
	3.4	Concl	usion		47
4	Арр	lication	ns of Circu	ulating DNA Analysis in Personalized	
	Med	licine			53
	Dan	a W. Y.	Tsui and i	Muhammed Murtaza	
	4.1	Biolog	gical Cha	racteristics of Circulating DNA	53
		4.1.1	History	-	53
		4.1.2	Biologie	cal Characteristics	54
	4.2	Molec	ular Met	hods for Circulating DNA Analysis	55
	4.3	Circul	ating Tu	mor-Specific DNA in Cancer Patients	58

		4.3.1	Monito	ring of Tumor Burden and Disease	
			Respon	se	58
		4.3.2	Molecu	lar Stratification for Targeted Therapies	59
		4.3.3	Analysi	s of Clonal Evolution and Therapeutic	
			Resista	nce	60
	4.4	Circul	lating DN	IA for Noninvasive Prenatal Diagnostics	60
		4.4.1	Noninva	asive Diagnosis of Fetal Genetic	
			Disease	S	61
		4.4.2	Noninva	asive Prenatal Diagnosis of	
			Down-S	Syndrome	61
		4.4.3	Noninva	asive Sequencing of the Fetal Genome	62
		4.4.4	Clinical	Implementation of Prenatal Diagnosis	63
	4.5	Circul	lating DN	IA in Transplant Recipients	63
	4.6	Pre-a	nalytical	Considerations	63
	4.7	Concl	usion		65
5	Circ	ulating	Tumor C	ells and Personalized Medicine	77
	Jin S	un Lee,	Mark Jes	sus M. Magbanua, Marc R. Jabon,	
	and	John W	/. Park		
	5.1	Metas	stasis and	d Circulating Tumor Cells	77
		5.1.1	The Me	tastatic Process	78
		5.1.2	Circulat	ting Tumor Cells	79
	5.2	Enric	hment ar	nd Detection of CTCs	79
		5.2.1	Enrichr	nent	80
		5.2.2	Detection	on	82
			5.2.2.1	Immuno-cytomorphological approach:	
				Immunocytochemistry (ICC)	82
			5.2.2.2	Molecular approach: Real-time	
				reverse transcription polymerase	
				chain reaction (RT-PCR)	84
	5.3	Clinic	al Implic	ations of CTC Detection and	
		Enum	eration		84
			Breast (85
			Prostat		86
				tal Cancer	87
			Lung Ca		88
	5.4			racterization of CTC and Personalized	
		Medio	cine		89

	5.4.1	Tumor	Biomarkers in CTCs	89
	5.4.2	Molecu	lar Analysis of CTCs	90
	5.4.3	Clinical	Trials for Personalized Medicine	90
5.	5 Sumn	nary		92
6 M	ouse Mo	dels in Pe	ersonalized Cancer Medicine	103
М	. E. Beaul	lieu, T. Jai	uset, D. Massó-Vallés, L. Soucek,	
ar	nd J. R. W	-		
6.		•	ouse Models: From Understanding the	
			is of Tumorigenesis to the Refinement	
		0 0	n Targeting Specific Mutated/Altered	
	Prote			104
	6.1.1	Prenata	ll GEMMs	105
		6.1.1.1		
			recombinase technology	105
	6.1.2		al GEMMS	107
		6.1.2.1	Irreversible models: Inducible CRE	
			recombination	107
		6.1.2.2	Switchable models: The tetracycline	
			inducible system	108
			The estrogen-receptor system	110
	6.1.3		: Benefits and Drawbacks	111
6.			d Xenograft (PDX): Tumor	
			and the Exploration of Avatars as	
			Freatment Outcome	112
			g Material	113
			f Implantation	115
			nt Mouse Strains	116
			Personalized Medicine	117
			imitations and Value	121
6.			ouse Models: Bringing the Major	
	-		nto the Biological Game	122
			ed for Better Models	122
			nizing" the Mouse Models	123
		-	antation of Hematopoietic Stem Cells	124
	6.3.4	-	antation of Peripheral Blood	
			uclear Cells	125
	6.3.5	Local "H	Jumanization"	125

		6.3.6	Overcoming Limitations of the Model	126
		6.3.7	Success Stories	126
		6.3.8	Humanized Mouse Models: Future Perspectives	128
	6.4	Discu	ssion and Perspectives	128
7	Tum	or Mic	roenvironment, Therapeutic Resistance, and	
	Pers	onalize	ed Medicine	145
	Yu S	un		
	7.1	TME	Orchestrates Disease Progression and	
		Domi	nates Therapeutic Response	146
		7.1.1	Cancer-Associated Fibroblasts	147
		7.1.2	Vasculature System	148
		7.1.3	Extracellular Matrix	148
		7.1.4	Immune Cells	149
			TME-Derived Exosomes	151
	7.2		ment-Activated TME Confers Acquired	
		Resist	tance and Creates Barriers to a Clinical	
		Cure		154
		7.2.1	Damage Responses of the TME Offset	
			Therapy-Enforced Tumor Regression	154
		7.2.2	Modified Differentiation and Immune	
			Responses in the TME Decrease	
			Therapeutic Outcomes	157
	7.3	Overc	coming Challenges of Personalized Cancer	
		Thera	apy Requires Translation of Biological Insights	
		into t	he Clinic	158
		7.3.1	Implications of Personalized Cancer Therapy	
			in an Era of Precision Medicine	158
		7.3.2	Significance of Preclinical Studies in	
			Promoting PCT Advancement	163
	7.4	Concl	uding Remarks and Future Outlooks	165
8	Pers	onalize	ed Immune Therapy	175
	Joos	t Hegn	nans, Lysanne Lievense, and Joachim Aerts	
	8.1	Immu	inotherapy	176
	8.2	Immu	ine Cell Involvement during Carcinogenesis	177
	8.3	Conte	ext-Specific Nature of Immune Cells within	
		Tumo	ors	177

	8.4	Types	Ypes of Immunotherapeutic Approaches			
		8.4.1	Biological Response Modifiers			
		8.4.2				
		8.4.3	Tumor V	Vaccines	181	
		8.4.4	Cellular	Immunotherapy	181	
			8.4.4.1	Dendritic cell-based immunotherapy	182	
			8.4.4.2	Adoptive genetically modified and/or		
				expanded T-cell therapy	182	
			8.4.4.3	Adoptive natural killer (T) cells'		
				transfer	183	
	8.5	The F	uture of I	Personalized Medicine	183	
•		م سا ا				
9			Malignan	eritoneal Chemotherapy (HIPEC) for	189	
			-	M. DeRosa, L. Petrukhin, Y. Bressler,	109	
		. Dutes, R. N. Ta		M. DENOSO, E. PELIOKIIII, I. DIESSIEI,		
				thermic Intraperitoneal Chemotherapy		
	7.1	(HIPE		thermie merupernonear enemotierapy	189	
	9.2		Role of Heat as a Cytotoxic Agent			
	9.3		Role of Heat Shock Proteins in HIPEC			
	10	Treat				
	9.4			utic Agents Used for HIPEC	192 193	
		9.4.1				
			-	(Platinol and Platinol-AQ)	193	
		9.4.2		picin: (7S,9S)-7-[(2R,4S,5S,6S)-		
				o-5-hydroxy-6-methyloxan-2-yl]oxy-		
				rihydroxy-9-(2-hydroxyacetyl)-4-		
			methoxy	y-8,10-dihydro-7H-tetracene-5,		
			12-dion	-	194	
		9.4.3	Carbopl	atin: (cis-diammine-1,		
				outane dicarboxylate		
			platinur	n II, CBDCA, JM8)	195	
		9.4.4	-	an: 4-[bis(chloroethyl)amino]		
			phenyla		195	
	9.5	Qualit	y-of-Life	Impact of HIPEC Treatment	196	
	9.6	The F	uture of I	HPEC: The Need for		
		Personalization				

10	Personalized Medicine in Hereditary Cancer Syndromes						
	Rishi Agarwal and Vivek Subbiah						
	10.1	Introduction					
	10.2	Neurofibromatosis Type 1					
	10.3	10.3 Neurofibromatosis Type 2					
	10.4	Gorlin Syndrome	204				
	10.5	Hereditary Breast and Ovarian Cancer					
		Syndrome	205				
	10.6	Lynch Syndrome	208				
	10.7	Familial Adenomatous Polyposis	208				
	10.8	Fanconi Anemia	210				
	10.9	Inherited Medullary Thyroid Cancer	211				
	10.10	Tuberous Sclerosis Complex (TSC)	212				
	10.11	RASopathies	213				
	10.12	Von Hippel–Lindau Disease	214				
		10.12.1 Tyrosine Kinase Inhibitors (TKIs)	215				
		10.12.2 mTOR Inhibitors	216				
		10.12.3 Anti-VEGF Receptor Antibodies	216				
		10.12.4 Other Agents Including Histone					
		Deacetylases (HDAC) Inhibitor	217				
	10.13	Cowden Syndrome	217				
	10.14	Proteus and Proteus-Like Syndrome					
	10.15	Li–Fraumeni Syndrome	218				
	10.16	Conclusions	219				
11	Pathol	ogy in the Era of Personalized Medicine	227				
	Hye Seung Lee						
	11.1 Why Is the Role of Pathologists in Personalized						
		Medicine Important?	228				
		Practical Guidance for Molecular Pathology	229				
		11.2.1 Preanalytic	229				
		11.2.2 Analytic	230				
		11.2.3 Quality Assurance	232				
		11.2.4 Postanalytic	233				
	11.3	Next-Generation Sequencing and the	200				
		Pathologist	234				
		Conclusions	235				

12	Micro	RNAs in Human Ca	ncers	239			
	Tae Jin Lee and Carlo M. Croce						
	12.1	Introduction					
	12.2	Biogenesis and V	Working Mechanism of MicroRNA	242			
	12.3	MicroRNAs as Tu	amor Suppressors	244			
	12.4	MiRNAs as Onco	genes	245			
	12.5	MiRNAs and Epi	genetics	247			
	12.6	MiRNA Signatur	es in Human Cancers	248			
	12.7	Biomarker MiRN	IAs in Human Cancers	249			
	12.8	Circulating MiRN	NAs as Biomarkers of Human				
		Cancers		251			
	12.9	Single Polymorp	hism (SNP) in MiRNAs	252			
	12.10	MiRNA and Cano	er Stem Cells	253			
	12.11	Perspectives		253			
13	Pharm	acogenomics of Ta	imoxifen	265			
	Hitoshi Zembutsu						
	13.1	What Is Tamoxife	n?	266			
	13.2	Why Is Pharmaco	genomics of Tamoxifen				
		Important?		266			
		13.2.1 Metabolic	: Pathway of Tamoxifen	267			
		13.2.2 <i>CYP2D6</i> G	enotype and Pharmacokinetics				
		of Tamoxi	fen	269			
		13.2.3 <i>CYP2D6</i> G	enotype and Tamoxifen Efficacy	269			
	13.3	The Controversy i	n Tamoxifen- <i>CYP2D6</i> Study	270			
	13.4	Future Direction o	of Tamoxifen Pharmacogenomics	271			
		13.4.1 Pharmaco	ogenomics for Irinotecan: UGT1A1	271			
		13.4.2 Pharmaco	ogenetic Test of <i>CYP2C9</i> and				
		VKORC1 C	Genotypes for Warfarin Treatment	272			

Index

279

Preface

On a busy morning one day, I got an email from a publisher asking for a new publication on precision and personalized medicine for cancer treatment and research. By that time, I had led several relevant projects, including the development of new next-generation sequencing (NGS) technologies and corresponding bioinformatics programs. There were surely successful and commercial products developed from these projects (which are now available in the genetic analysis market in the world), yet I was not sure if I would be able to write or edit a textbook on a big topic like personalized medicine. Previously, I only had had a chance to join two scientific books as a single-chapter contributor, but had never written or edited a whole book by myself. It seemed quite overwhelming to me at the time. However, as several months passed since I received the first email about this opportunity. I began to open my mind and be more positive towards the idea. In fact, I had been working on personalized medicine, cancer genetics, companion diagnostics, and cancer biomarker discovery for more than 15 years by then. Thus, I thought it would be good to organize and integrate all the knowledge that I have along with that which top-level scientists, researchers, and medical doctors have been gathering regarding personalized medicine in cancer. Consequently, I gladly decided to embark on this project even though I was very busy developing multiple new sequencing and genetic technologies. First, I tried to select the topics that could be the most beneficial for the people engaged in training such as graduate students, medical residents, and other highlevel professionals who are relatively unfamiliar with personalized medicine. The next thing I did was the most time-consuming and challenging work—finding the most suitable people who can write on the topic with up-to-date knowledge and information in a plain language. As a matter of fact, it took me almost an entire year to find all the world-class authors for each chapter. I really appreciate all the contributors of each chapter in this book. Without their contribution and efforts, the book could not have been published. I thank them for their patience and support because it took much longer than expected to finally get this book published. I also appreciate my good friend and colleague Pedro Mendez, who designed the cover for this book. I must say that he is the most artistic person I have ever met in my group. I also thank James Kim for his editorial assistance and sincere friendship. I thank the whole team at the UCSF Thoracic Oncology Program and CureSeq for their support and inspiration on precision medicine and companion diagnostics in developing new weapons (the world's fastest mutation screening assay) fighting cancer. Finally, I thank Stanford Chong greatly for suggesting and giving me a chance to publish this book, and Sarabjeet Garcha for all the help and communication.

I would like to offer my wholehearted gratitude to my family who supported me not only in the writing of this book but also in all my work in general. My parents, Ho-Young Kim and Yong-Soon Bang, in Korea taught me well to maintain a strong passion for my life's goals, and also to give endless love to my family. My wife, Hio Chung Kang, and my two sons, Thomas Kunhee and Benjamin Kunjune Kim, are truly the very source of all my sweat, effort, motivation, and energy behind the achievements.

We are already in the era of personalized and precision medicine for curing cancer. Technologies and methods will develop continuously and evolve rapidly. However, grasping the core concept and principles will constantly remain crucial until we finally cure cancer. I really hope this book will be helpful and informative to current and future heroes and heroines in their fight against, and the eventual conquest over, cancer.

> **II-Jin Kim** February 2017 San Francisco