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Preface

Building on Our Foundation

In 2008, we published the first edition of Clinical and Basic Immunodermatology. Over the 
past 9 years, much has changed in the basic science and clinical arenas, stimulating Steve 
Tyring and me to update our textbook. We have the good fortune that Dr. Daniel H. Kaplan, a 
highly accomplished immunodermatologist, joined our editorial team, which has augmented 
our knowledge in the field and expanded our network of experts to address the ever-broadening 
horizons of cutaneous immunology.

There continues to be a tremendous number of advances in the fields of cellular, molecular, 
innate, and adaptive immunity, as well as immunopharmacology, which have been translated to 
a better understanding and treatment of a number of dermatologic diseases. There are also a 
number of new therapeutic agents that are targeted therapies, or have an immune mechanism. 
All of these developments have occurred in the backdrop of the information age. Our goals of 
this textbook remain the same as with the first edition of Clinical and Basic Immunodermatology. 
We have recruited national and international experts to author chapters on their respective areas 
of expertise. Hence, our approach for this important endeavor is that of a multiauthored collec-
tion of chapters that would be integrated into this book. Our goal is to present the latest informa-
tion related to fundamentals of the skin immune system, as well as a disease-focused textbook 
in the same concise, readable, and easily digested format that was initially developed by Dr. 
Dahl with his original Clinical Immunology textbook in 1981. We have recruited new experts to 
provide information summarized in their chapters. We have added new subject matter such as 
the expanded role of innate lymphocytes in the immune system and their role in dermatologic 
disease, a section on antimicrobial peptides, a chapter focused on auto-inflammatory diseases, 
as well as a chapter on the role of cell death in skin homeostasis and dermatologic diseases.

We thank the authors for their outstanding contributions. We remain grateful to Dr. Dahl for 
his vision and his original book, which has had profound influence on generations of derma-
tologists. We have strived to enhance the teaching of cutaneous immunology, particularly as 
related to skin disease, to the next generations of young dermatologists who will be caring for 
patients afflicted with immune-based skin diseases. We would be delighted if our textbook 
triggered the kind of interest in immunology that was stimulated in us, the editors, during our 
training.

Over the next few years, we look forward to watching the progress unfold in the field of 
immunodermatology that will lead to the third edition of our textbook Clinical and Basic 
Immunodermatology.

Baltimore, MD, USA � Anthony A. Gaspari
Pittsburgh, PA, USA � Daniel H. Kaplan 
Houston, TX, USA� Stephen K. Tyring
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Innate and Adaptive Components 
of the Cutaneous Immune Barrier: 
The Central Role of Dendritic Cells

Georg Stingl, Marie-Charlotte Brüggen, 
and Mariana Vázquez-Strauss

Abstract

Immune responses initiated in the skin can be extremely powerful at both a local and sys-
temic level. One of the milestones in elucidating the mechanisms underlying this phenom-
enon was the discovery of the T cell response-inducing function of Langerhans cells (LC). 
In the meantime, we know that the family of dendritic antigen-presenting cells in the skin is 
much bigger and, in addition to LC, includes dermal dendritic cells (DDC), CD141 + DC, 
CD14 + DC, inflammatory DC and plasmacytoid DC. Depending on the cellular and molec-
ular milieu, these cells can function as either sensitizing or tolerizing elements. Signals 
transmitted from (innate) receptors recognizing damage- or pathogen-associated patterns 
are involved in directing these different functions in DC. Toll-like pathogen recognition 
receptors (TLR) have been particularly well investigated in this regard. The distinct distri-
bution of TLR on LC and other DC subsets allows the immune system to elegantly orches-
trate the regulatory and pro-inflammatory functions of these cells. Intriguingly, TLR 
signaling in DC/LC not only allows to initiate adaptive immune responses, but also directly 
induces innate effector functions. This is demonstrated by our findings on the mechanisms 
underlying basal cell carcinoma (BCC) regression upon treatment with the pharmacological 
TLR7 agonist imiquimod. We observed that in imiquimod-treated BCC, plasmacytoid DC 
directly kill tumor cells via the apoptosis-inducing molecule TRAIL. Melanoma cells can 
also become TRAIL-susceptible, but the magnitude of this phenomenon varies from patient 
to patient. Our recent findings show that TRAIL susceptibility of melanoma cell lines can 
be increased upon exposure to the anti-inflammatory compound diclofenac.

Taken together, we begin to understand the exact position of LC and DC in the highly 
complex circuits of the immune system in the skin and how these cells could be manipu-
lated for therapeutic purposes.
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Abbreviations

APC	 Antigen-presenting cell
BCC	 Basal cell carcinoma
CHS	 Contact hypersensitivity
DC	 Dendritic cell
DDC	 Dermal dendritic cell
dsRNA	 Double-strain RNA
LC	 Langerhans cell
LPS	 Lipopolysaccharides
LTA	 Lipotechoic acid
MHC	 Majory histocompatibility complex
PAMP	 Pathogen-associated molecular pattern
pDC	 Plasmacytoid dendritic cell
PRR	 Pattern recognition receptor
S.	 Staphylococcus
ssRNA	 Single-stranded RNA
TLR	 Toll-like receptor
TRAIL	 Tumor necrosis factor related apoptosis inducing 

ligand
UV	 Ultraviolet
poly I:C	 Polyinosinic:polycytidylic acid

�Introduction

One of the first documented examples revealing the potency 
of immune responses initiated in the skin is the successful 
smallpox vaccination by Edward Jenner [1]. In this heroic 
experiment performed on the son of his gardener, Jenner 
introduced scraping material obtained from an infectious 
cowpox pustule (of a dairymaid) into the skin. A few weeks 
later, upon re-inoculation with material from a fresh small-
pox lesion, the boy was protected from the disease.

It took quite a while until it was realized that immuniza-
tion via the skin can result in a stronger, longer lasting 
immune response than immunization via other routes. This is 
impressively illustrated by the induction of cancer immunity, 
which succeeded following the repeated intracutaneous, but 
not extracutaneous application of cancer (murine sarcoma) 
homogenates [2]. During the following decades, consider-
able efforts were made to unravel the mechanisms underly-
ing this phenomenon.

The enigma seemed resolved when it was discovered that 
epidermal dendritic cells (namely Langerhans cells (LC)) can 
evoke very robust proliferative responses in naive and 
sensitized T cells [3, 4], which were greater in magnitude 
than those induced by mononuclear phagocytes (see also 
Chap. 9, Dendritic cells). Streilein et  al. could show in a 
murine model of allergic contact dermatitis termed contact 
hypersensitivity (see Chap. 22) that the epicutaneous applica-
tion of a hapten only led to sensitization when the skin of the 

application site contained LC but not when it was devoid of 
these cells [5]. Based on these findings, the idea evolved that 
an antigenic encounter in the skin/epidermis invariably results 
in LC-mediated T cell activation and thereby sensitization. 
Were this concept true, one would expect an army of hetero- 
or even autoreactive T cells to constantly populate, attack and 
injure the skin. Luckily, this is not the case. The possibility 
that the mere presence of LC is not necessarily predictive of 
the occurrence of productive T cell responses came from the 
observation that LC evoked robust T cell stimulation only 
upon receipt of activating stimuli [6]. These stimuli include 
the disruption of skin homeostasis and the exposure to danger 
signals (e.g. immunogenic haptens, microorganisms) that 
results in the release of proinflammatory cytokines and other 
mediators. By contrast, resting LC [7], LC from corticosteroid-
treated patients [8] or LC from ultraviolet (UV) irradiated 
skin (via keratinocytic RANKL expression, [9]) lead to an 
expansion of CD4+/CD25+/GITR+/FoxP3+ regulatory T 
cells (Treg) capable of down-modulating proliferative and 
cytotoxic T cell responses. The exclusive role of LC in the 
initiation of T cell responses via the skin was further ques-
tioned by the discovery of a second DC population in normal 
human skin, namely CD1+ dermal dendritic cells (DDC). 
DDC are equally potent as LC with regard to their immunos-
timulatory capacity in vitro but exhibit certain phenotypic 
features that allow distinguishing them from LC (cf. Fig. 
1.1a). The relative contribution of LC and DDC in the elicita-
tion of sensitizing and tolerizing skin-derived immune 
responses is a matter of conjecture and heavy debate. On the 
one hand, the positive correlation between epidermal LC den-
sity and the success rate of epicutaneous sensitization (e.g., 
contact hypersensitivity (CHS), epicutaneous vaccination) 
clearly argue in favor of an important role of LC in this pro-
cess. On the other hand, elimination of epidermal LC in mice 
by genetic manipulation results in an enhanced CHS response 
as compared to wild-type mice [10].

From a conceptual viewpoint, it makes perfect sense to 
assume that danger signals not reaching beyond the epi-
dermis, i.e. the site of LC, will not mobilize all the armed 
forces the immune system is capable of activating. On the 
other hand, virulent microorganisms that breach the 
dermo-epidermal junction and thereby can reach DDC 
should trigger a massive host defense response that can 
successfully eliminate the pathogen. From this perspec-
tive, one would expect that LC mainly act as regulatory 
antigen-presenting cells (APC) inducing a state of antigen-
specific non-responsiveness. Following this reasoning, 
DDC should remain inert under homoeostatic conditions 
and mature into potent sensitizing DC upon receiving 
appropriate activation signals. The “black and white” 
picture of the roles of LC vs. DC is probably not tenable 
under all circumstances. As an example, in response to an 
overwhelming microbial insult, LC can engage themselves 
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in the promotion of a T effector cell response [7]. Although 
we have gained more insight into the LC and DC network 
in the skin, we are still far from understanding it in all its 
complexity. This is illustrated by the recent finding of 
another (although quantitatively minor) DC subset resid-
ing in steady-state skin, i.e. CD141+ DC (Fig. 1.1a) [11]. 
These DC seem to be mainly engaged in antigen cross-
presentation [12].

In an inflammatory setting, skin-resident LC, DDC and 
CD141+ DC undergo phenotypic and functional changes. 

In addition, various other types of DC are entering the 
stage (cf. Fig. 1.1b). These blood-derived DC include the 
so-called plasmacytoid DC (pDC), various DC with an 
inflammatory phenotype (inflammatory DC, IDEC) and 
CD14+ (monocyte-derived) DC. All of them exhibit dis-
tinct features with regard to their antigen presentation 
properties and interaction with other immune cells (for 
review, cf. [13, 14]). They play major roles in the patho-
genesis of various skin conditions such as atopic dermati-
tis (Chap. 22) and psoriasis (Chap. 21). Their involvement 

b

aFig. 1.1  LC and DC populations 
in human skin. (a) LC and DC 
residing in human skin in the 
steady state and (b) infiltrating 
the skin during inflammation. 
The main suface markers and 
pattern recognition receptors of 
the respective subpopulations are 
depicted
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in these diseases will be discussed in the respective 
chapters of this book.

�Toll-Like Receptors: Bridging Innate 
and Adaptive Immunity

�Pattern Recognition Receptors: Sensing 
the Danger

Until quite recently, it was essentially unknown by which 
mechanisms danger signals (such as immunogenic haptens 
and microorganisms) trigger the activation and maturation of 
LC and other DC in the skin and ultimately initiate an 
adaptive immune response. A series of discoveries (for 
review, cf. [15, 16]) has shed new light on this issue by 
revealing that DC function and development are essentially 
modulated by innate immune receptors recognizing damage- 
or pathogen-associated molecular patterns (DAMP and 
PAMP; listed in Table 1.1) (see Chap. 2). Among this grow-
ing family of pattern recognition receptors (PRR), the so-
called toll-like pathogen recognition receptors (TLR) have 
been particularly well investigated. Ten TLR have been 
described in humans so far (listed in Table 1.2). TLR can be 

broadly divided into two groups (extra- vs. intracellular). 
Extracellular TLR (TLR1, 2, 4, 5, 6) essentially recognize 
bacterial and fungal products. Briefly, TLR2 combined with 
TLR1 or TLR6 mostly recognizes motifs of gram-positive 
bacteria (e.g. lipoproteins, lipotechoic acid (LTA)), while 
TLR4 senses gram-negative bacteria-associated lipopolysac-
charides (LPS). Bacterial flagellin is recognized by TLR5. 
The intracellular receptors TLR3 and TLR7-9 recognize 
mostly virus-derived nucleic acids, i.e. double-stranded 
RNA (dsRNA; TLR3), single-stranded RNA (ssRNA) 
(TLR7-8) and CpG oligodeoxynucleotides (TLR9).

The potency of TLR-mediated danger signals in triggering 
immune responses cannot be reduced to their impact on DC 
and other cells of hematopoietic origin. In fact, keratinocytes 
[17] express a series of TLR (at the mRNA level: TLR1-6 and 
9-10; functionally: TLR3, 4, 5 and 9, [17, 18]). Engagement 
of their respective ligands can trigger (as illustrated in the fol-
lowing paragraphs) both innate and adaptive responses.

As far as LC and DC are concerned, studies investigating 
their TLR expression have yielded partially divergent results 
[18–21], probably due to differences in the experimental set-
ting, e.g. culture conditions. It seems clear that LC and the 
various DC subsets do not share the same TLR expression 
patterns (cf. Fig. 1.1a, b) and, in consequence, exhibit differ-

Table 1.1  Pattern recognition receptors (PRR) and their principal ligands
A) Principal PRR families

Group of PRR Examples of PRR Principal PAMP/DAMP(s)

Nucleotide-binding oligomerization domain  
(NOD)-like receptors (NLR)a

NOD1 (CARD4)
NLRP1B (NALP1)
NLRP3 (NALP3)

iE-DAP, GM-tripeptide
Anthrax letal toxin MDP, DNA, RNA, toxins

Retinoic acid inducible gene I (Rig1)-like receptors 
(RLR)

DDX58 (RIG-1)
DHX9, DHX36

Short ds-RNA, ss-RNA
DNA

C-type lectin receptors (CLR) CD207 (langerin),
CD209 (DC-SIGN),
CLEC6A

Fucose, mannose
High mannose
High mannose

Toll-like receptors (TLR) (cf. below)
aFor details, cf. [16, 55]

B) TLR 

Localization TLR subtype Principal PAMP(s) Mostly expressed on

Extracellular TLR1/TLR2a Lipoproteins Gram-positive bacteria, 
mycobacteria

TLR2 Lipoproteins, peptidoglycan (PGN) Gram-positive bacteria

TLR4 Lipoproteins, lipopolysaccharides (LPS) Gram-negative bacteria

TLR6/TLR2a e.g. lipoteichoic acid (LTA) Gram-positive bacteria, 
mycoplasma

TLR10 Not known

TLR5 Flagellin Flagellated bacteria

Intracellular TLR7 Single-stranded RNA (ssRNA) Viruses

TLR8 ssRNA Viruses

TLR9 CpG oligodeoxynucleotide Bacteria; DNA viruses

TLR3 Double-strain RNA (dsRNA) Viruses
aHeterodimerized; for review, cf. [15]
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ent reactions to microbial or other immunogenic stimuli. 
This distinct distribution of TLR on DC allows the immune 
system to elegantly orchestrate innate and adaptive responses, 
which is why growing efforts have been put into the develop-
ment of vaccine formulations making use of these 
mechanisms.

�TLR as Gatekeepers of Tolerance 
Towards Bacteria?

According to the idea that LC are responsible for maintain-
ing tolerance and DDC for initiating immune reactions, one 
would expect that LC do not react to the epidermal invasion 
of harmless, gram-positive bacteria belonging to the com-
mensal skin flora. This theory seems to be supported by the 
finding that DDC abundantly secrete IL-6 and TNF-α when 
exposed to bacterial components (such as Pam3CSK, a syn-
thetic TLR1/2 ligand, LPS and PGN [21]), while LC secrete 
IL-6, -8 and -10 only upon exposure to PGN [18, 21]. PGN-
induced IL-10 could, via its inhibitory effect on the antigen 
presentation function of LC [22], contribute to LC-modulated 
tolerance towards commensal bacteria. The concept that 
TLR-mediated signals can contribute to maintaining toler-
ance is further strengthened by evidence from keratinocyte 
studies. The latter have shown that in keratinocytes engage-
ment of LTA belonging to the commensal bacterium 
Staphylococcus (S.) epidermidis, but not to S. aureus induces 
an inhibitory effect on TLR3-triggered IL-6 and TNF-α 
expression [23] and even promotes the expression of antimi-
crobial peptides [24].

�Orchestration of TLR-Transmitted Signals 
in Viral Infections

As far as viral infections are concerned, it was even before 
the discovery of TLR that the so-called pDC were identified 
as a rich source of the type I interferon IFN-alpha (IFN-α) in 
response to viruses (review in: [25]). IFN-α is a potent tool 
in the antiviral defense and acts against viruses both indi-
rectly (by enhancing adaptive immune functions) and 
directly. Later, it was found that the abundant IFN-α produc-
tion in pDC is triggered by signals from TLR recognizing 
virus components, i.e. ssRNA (TLR7) and CpG oligonucle-
otide (TLR9). In contrast, DDC as well as freshly isolated 
LC do not seem to undergo phenotypic or functional changes 
in response to direct exposure to these TLR ligands [18]. In 
the presence of CpG-stimulated keratinocytes however 
(which abundantly produce IL-1α, TNF-α and GM-CSF), 
LC up-regulate major histocompatibility complex (MHC) 
class II and the costimulatory molecule CD86 [26]. The 
complexity of TLR-transmitted “danger signals” is illus-

trated by the finding that dsRNA, the virus-associated ligand 
for TLR3, does not elicit any response in pDC (for review, 
cf. [25]) but instead enhances different functions in LC and 
DDC.  In LC, the synthetic TLR3 ligand 
polyinosinic:polycytidylic acid (poly I:C) induces changes 
that promote an adaptive antiviral response. These include 
maturation, IL-6 production and upregulation of CD70 (a 
potent promoter of CD8+ T cell responses) [27]. Meanwhile, 
exposure of CD141+ DC to poly I:C results in IFN-γ pro-
duction in CD141+ DC [11] and enhances (in a skin explant 
model) maturation and migration [20]. Keratinocytes 
respond to poly I:C by up-regulating surface molecules such 
as MHCII, CD40 and the Fas receptor [17] and by abun-
dantly secreting TNF-α and IL-6 [23].

�TLR-Transmitted Danger Signaling 
Beyond Skin Infections

A role of TLR danger signals has been demonstrated in various 
skin conditions beyond infections including acne vulgaris 
(Chap. 24), roseacea, skin cancers and psoriasis (Chap. 21) (for 
overview, cf. [28]). In the case of CHS, it had long been known 
that immunogenic haptens induce the secretion of proinflam-
matory cytokines in keratinocytes, LC [29] and DC and that 
skin inflammation is required for the development of sensitiza-
tion to a hapten. The molecular events behind this remained 
obscure. An involvement of certain TLR in CHS was indicated 
by studies revealing that TLR2/TLR4 double-deficient mice 
are completely resistant to CHS development (see also  
Chap. 23). The finding that germ-free mice still develop CHS 
pointed towards a role of endogenous (and not necessarily 
microbial) ligands in eliciting inflammation during the sensiti-
zation phase. In mice, some allergens (such as 2,4,6-trinitro-
1-chlorobenzene, oxazolone, and fluorescein isothiocyanate) 
seem to indirectly activate TLR [28]. Meanwhile, Goebeler 
et al. were able to demonstrate in elegant experiments that Ni2+ 
ions directly bind to the human TLR4 and, by doing so, initiate 
a signaling cascade resulting in the generation of proinflamma-
tory signals [30]. The respective role of keratinocytes, LC and 
DC in TLR-mediated inflammation during the sensitization 
phase of CHS remains to be elucidated. The lack of TLR 
expression on LC for instance did not dampen CHS develop-
ment in a mouse model [31].

In atopic dermatitis (see also Chap. 22), patients exhibit 
reduced expression of TLR2 on keratinocytes and mono-
cytes/macrophages [32, 33]. TLR2 recognizes S. aureus-
associated patterns and enhances the expression of certain 
tight junction molecules [34]. The deficiency of TLR2 in 
atopic dermatitis patients could thereby not only contrib-
ute to their susceptibility to S. aureus infections but also 
reinforce barrier dysfunction, a major feature of the 
disease.
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�TLR-Driven Innate Effector Functions of DC

�Imiquimod: A Pharmaceutic TLR Ligand

In the early 1990s, it was reported that incubation of periph-
eral blood leukocytes with certain imidazoquinolines (e.g. 
imiquimod, resiquimod) results in the production of IFN-α 
by these cells. Soon, it became clear that imiquimod acts as 
an artificial ligand of TLR7 [35], single-strand sensing recep-
tor important in triggering IFN-α in pDC [36].

Given the crucial role of IFN-α as a first line defense 
against viral infections, imiquimod has been developed into 
a topical cream compound (Aldara®) for the treatment of 
viral acanthomas such as genital warts [37]. In the years to 
come, Aldara® cream was also proven to be efficacious in 
superficial basal cell carcinomas (BCC), lentigo maligna and 
actinic keratoses (review in: [38]).

�pDC as Effector Cells in Imiquimod-Induced 
Tumor Regression

We as well as other investigators set out to unravel the mode 
of action of topical imiquimod. In a first series of experiments, 
we observed that application of Aldara® cream to murine ear 
skin for only a few days causes massive infiltration of neutro-
phils, macrophages and, particularly noticeable, pDC. In sub-
sequent experiments we transplanted a (murine) melanoma 
cell line into the skin of mice. After several weeks, melano-
mas had appeared and were then treated with either Aldara® 
cream or vehicle. Aldara® but not the vehicle regularly 
induced resolution of tumors not exceeding a volume of 
130  mm3. Again, pDC were conspicuously present around 
and within the regressing melanoma cell islands [39]. All 
these findings led us to hypothesize that pDC were, in one 
way or the other, involved in Aldara®-induced tumor regres-
sion. In a subsequent study, we treated sporadic superficial 
BCC from seven patients with topical imiquimod for a total 
of 6 weeks and examined the clinicopathologic features of the 
tumor during the course of therapy [40]. After 2 weeks of 
treatment, BCC lesions showed signs of severe inflammation 
that quickly resolved after termination of therapy and left 
behind an area of normal-appearing skin histopathologically 
free of cancer cell nests (Fig. 1.2a). Immunohistological anal-
ysis of lesional skin after 2 weeks of imiquimod treatment 
revealed changes similar to those seen in our murine model. 
This was evidenced by a considerable number of apoptotic 
cancer cells and tumor cell islands surrounded and/or infil-
trated by a dense inflammatory infiltrate that contained con-
siderable numbers of inflammatory DC of both the myeloid 
and the plasmacytoid type (Fig. 1.2b, c). When we evaluated 
by immunohistochemistry the expression of lytic molecules, 

we surprisingly found granzyme B and perforin mainly on 
myeloid DC and TRAIL (tumor necrosis factor related apop-
tosis inducing ligand) mainly on pDC. Strikingly, the apopto-
sis-inducing TRAIL-receptor 1 was expressed on BCC 
(Fig. 1.2c). These in vivo data received experimental support 
by in vitro studies demonstrating the capacity of imiquimod 
to induce TRAIL on peripheral blood pDC in a strictly IFN-
α-dependent manner. TRAIL-expressing, but not unstimu-
lated pDC were perfectly capable of lysing MHCI – bearing 
tumor cell targets [40, 41] implying that TRAIL-positive pDC 
in BCC are directly responsible for the killing of the cancer 
cells. The presence of the pro-apoptotic TRAIL receptor 1 on 
BCC cells supports this notion [40] as do studies in mela-
noma-bearing mice treated with imiquimod [42].

�Melanoma

In the case of human melanoma, the situation is more com-
plex. We have recently reported that pDC that had been ren-
dered TRAIL-positive by imiquimod stimulation were capable 
of lysing certain melanoma cell lines, but not others [41]. 
Further investigations revealed that these differences in TRAIL 
sensitivity are due to distinct expression patterns of pro-apop-
totic TRAIL receptors on different melanoma cell lines and, 
more importantly, of pro- and anti-apoptotic effector mole-
cules within these cell lines (Fig.  1.3a, b) [43, 44]. When 
searching for ways to increase the TRAIL susceptibility of 
resistant cell lines, we found in accordance with previous 
reports [45] that the anti-inflammatory compound diclofenac 
was able to do so (Vazquez-Strauss et al., in preparation). In 
fact, diclofenac led to an enhanced expression of pro-apoptotic 
TRAIL receptors on melanoma cells as well as to an upregula-
tion of pro-apoptotic and, vice versa, a downregulation of anti-
apoptotic molecules within the cancer cells [46]. It will be 
interesting to explore whether the beneficial effect of diclofe-
nac in the treatment of certain cancers is, at least partly, due to 
this phenomenon and, if so, whether ways can be found to 
maximize this tumoricidal effector mechanism.

�Conclusions and Outlook

As a result of intensive and increasingly sophisticated 
research, we begin to understand the cellular and molecular 
pathways operative in immune responses starting and termi-
nating in the skin. It has become apparent that a highly com-
plex interplay between the innate and adaptive immune 
system is required to maintain skin homeostasis and initiate 
host defense. LC and other DC play a central role in this 
complex network due to their multifaceted roles under physi-
ologic and pathologic conditions.

G. Stingl et al.



7

In the recent past, methods have been developed to exploit 
the functional diversity of LC and other DC subpopulations 
for therapeutic purposes. This is exemplified by the develop-
ment of new and better intradermally delivered vaccines (for 
review, [47]). In this setting, instead of simply injecting an 
antigen, the latter is selectively “addressed” to LC and/or 
certain DC subpopulations. Depending on both the type of 
ligand to which the antigen is coupled and the nature of the 

target structure, this allows to direct DC antigen-presenting 
function in one or the other direction. A good example is the 
engagement of C-type lectin receptors on DC surfaces such 
as DEC-205/CD205, langerin/CD207, DC-SIGN/CD209, 
Dectin, Clec9A, DCIR 1 and 2. These receptors facilitate 
antigen uptake and sometimes (e.g. TLR3 and TLR7,8 ago-
nists, CD40) induce maturational events in these cells. 
Clinically, this results in robust humoral and cellular CD4+ 

a b

c

Fig. 1.2  Effects of imiquimod on BCC. (a) Imiquimod topically 
applied to superficial BCC five times a week for a period of 6 weeks 
led to a local inflammatory response, which resulted in a complete 
clinical and histopathological tumor clearance in all patients treated. 
The clinical pictures are representative for all patients (n = 7) treated 

with imiquimod. Immunofluorescence triple labeling of (b) untreated 
and (c) imiquimod-treated BCC with anti-pancytokeratin (TRITC), 
anti-TRAIL-R1 (A488) and anti-CD123 (Cy5) reveals TRAIL-R1+ 
BCC cells surrounded by CD123+ cells (arrows in c) (© 2007 Stary 
et al. [40])

1  Innate and Adaptive Components of the Cutaneous Immune Barrier: The Central Role of Dendritic Cells
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and CD8+ T cell responses. In the absence of adjuvants, 
however, targeting DEC-205+ DC in vivo can induce 
tolerance [48]. Activation of Clec9A promotes potent anti-
body responses and facilitates cross presentation [49]. 
Particularly efficient in this latter regard is the CD40 recep-
tor, probably because of its relatively poor uptake and 
intraendosomal degradation [50]. By contrast, targeting the 
lectin-like receptor DC-asialoglycoprotein favors the gener-
ation of IL-10-producing CD4+ suppressor cells [51]. Other 
approaches resulting in either sensitization or tolerization 
include the use of nanoparticles [52, 53] as well as of cholera 
toxin [54]. On the other hand we could show that the use of 
TLR7, 8 agonists can drive innate effector functions in 

certain DC, i.e. their transformation into killer cells. Thus, 
the prospect to an efficacious DC-based immunotherapy,  
tailored to the needs of the individual patients, is realistic, yet 
challenging.

�Questions

	1.	 Which one of the following statements on LC in the skin 
is correct?
	A.	 UV-irradiation and the treatment with corticosteroids 

enhance the ability of LCs to induce cytotoxic T cell 
responses

a

b

Fig. 1.3  Expression of TRAIL receptors 
and apoptosis-related genes in TRAIL-
resistant and -susceptible melanoma cell 
lines. (a) The expression of TRAIL 
receptors was assesed by flow cytometry in 
in two resistant melanoma cell lines 
(WM983A and 1205Lu) and one 
susceptible melanoma cell line (WM793). 
Death receptors (TRAIL-R1, TRAIL-R2) 
and decoy receptors (TRAIL-R3, 
TRAIL-R4) for TRAIL were analyzed. 
Histograms representative for three 
experiments are shown. (b) Using qPCR 
array technology, the expression of 91 
apoptosis-related genes was screened in the 
same three melanoma cell lines (TRAIL 
resistant: WM983A and 1205Lu; TRAIL-
susceptible: WM793). Three biological 
replicates were performed. Data represent 
the mean fold (log10) change in mRNA 
expression of the depicted molecules in the 
resistant cell lines as compared to the 
susceptible WM793 cell line. Some of the 
most significantly up- and down-regulated 
genes (>4-fold change in expression) are 
displayed. *p < 0.05; **p < 0.01; 
***p < 0.001

G. Stingl et al.
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	B.	 LC are exclusive stimulators of Th1 cells
	C.	 Under certain conditions, LC can induce the expan-

sion of Tregs and down-regulate proliferative and 
cytotoxic T cell responses

	D.	 In contrast to keratinocytes, LC cannot produce any 
inflammatory cytokines

	E.	 LC are found in the dermis but not in the epidermis

	2.	 Which statement regarding TLR is true?
	A.	 TLR are exclusively expressed on cells of hematopoi-

etic origin
	B.	 While TLR signaling is a major modulator of innate 

immune responses, it does not have any effect on 
adaptive immune responses

	C.	 TLR recognizing lipids are located on the outer cell 
membrane while those recognizing proteins are found 
intracellularly

	D.	 The different DC subsets in skin express the same 
TLR repertoire

	E.	 TLR belong to the PRR family that includes receptors 
recognizing damage- and pathogen-associated molec-
ular patterns

	3.	 Which statement does not describe parts of the mecha-
nism underlying the imiquimod-induced clinical regres-
sion of BCC?
	A.	 Imiquimod acts as an artificial TLR7-ligand
	B.	 Imiquimod induces pDC to kill BCC cells in a mostly 

TRAIL-mediated fashion
	C.	 Imiquimod induces the killer molecule TRAIL on 

peripheral blood pDC in an IFN-α-dependent manner
	D.	 Imiquimod-treated BCC become selectively infil-

trated by NK cells
	E.	 Imiquimod application leads to the apoptosis of BCC 

cancer cells

Answers
	1.	 C
	2.	 E
	3.	 D
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Toll-Like Receptors
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Abstract

There are two major arms of the immune system: the innate immune response and the 
adaptive immune response. Innate immunity is the first line of defense against microbes and 
serves to limit infection within the early hours after exposure to a pathogen. It is classically 
associated with the recognition of pathogens by phagocytic cells via specific receptor 
recognition molecules or through complement fixation. Essential components of the innate 
immune response include neutrophils, natural killer cells, natural killer T cells, mast cells, 
complement, and antimicrobial peptides. Innate immune activation via pattern recognition 
receptors results in a specific expression of co-stimulatory molecules and cytokines. This 
inflammatory milieu shapes the subsequent adaptive response, which involves B cell activa-
tion and T cell-mediated recognition of foreign antigens presented on major compatibility 
complexes (MHC) I and II on the cell surface of antigen-presenting cells (APCs). Activated 
B and T lymphocytes then undergo clonal expansion to provide an antigen-specific immune 
response.
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There are two major arms of the immune system: the innate 
immune response and the adaptive immune response. 
Innate immunity is the first line of defense against microbes 
and serves to limit infection within the early hours after 
exposure to a pathogen [1]. It is classically associated with 
the recognition of pathogens by phagocytic cells via 
specific receptor recognition molecules or through 
complement fixation [1–3]. Essential components of the 
innate immune response include neutrophils, natural killer 
cells, natural killer T cells, mast cells, complement, and 
antimicrobial peptides. Innate immune activation via 
pattern recognition receptors results in a specific expression 
of co-stimulatory molecules and cytokines. This inflamma-

tory milieu shapes the subsequent adaptive response, which 
involves B cell activation and T cell-mediated recognition 
of foreign antigens presented on major compatibility 
complexes (MHC) I and II on the cell surface of antigen-
presenting cells (APCs) [3–5]. Activated B and T lympho-
cytes then undergo clonal expansion to provide an 
antigen-specific immune response.

The discrimination between innate and adaptive immu-
nity has long been recognized but the mechanisms that 
linked the two major arms of immunity were largely 
unknown until Charles Janeway first proposed the theory of 
pattern recognition in 1989 [2]. He suggested that highly 
conserved microbial molecular constituents called pathogen 
associated molecular patterns (PAMPs) activate germline-
encoded receptors on innate cells coined ‘pattern recogni-
tion receptors’ (PRRs). Janeway’s pattern recognition theory 
was later confirmed by the discovery of the toll-like receptor 
(TLR) family as well as other PRRs such as NOD1 and the 
family of NOD-like receptors (NLRs) [6–8]. TLRs represent 
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a key component of the innate immune system involved in 
sensing danger. Depending on the particular stimulatory 
antigen involved, specific downstream components of the 
signaling pathway are activated, which leads to the genera-
tion of an inflammatory response that shapes the subsequent 
adaptive immune response. Thus, TLRs play an essential 
role in bridging the gap between innate and adaptive immu-
nity. In support of this notion, studies have implicated TLRs 
in a variety of human diseases – TLR5 mutations have been 
linked to an increased susceptibility to Legionnaire’s dis-
ease [9] while TLR3 deficiency has been associated with 
herpes simplex encephalitis [10]. In the skin, TLRs have 
been shown to impact a variety of skin diseases and some 
widely used dermatologic drugs may possibly exert their 
therapeutic effects through TLR signaling (Table 2.1) [76]. 
This chapter will review recent evidence that demonstrates 
how TLRs affect a variety of skin diseases and infections.

�Discovery of TLRs in Humans and Its 
Expanding Role in Immunity

After Janeway proposed the theory of pattern recognition, 
based on what was then known about other innate immune 
receptors, his group was in search for cell-surface recep-
tors expressed on APCs that resulted in NF-κB activation 
[77]. Lemaitre et al. first identified the antifungal function 
of Drosophila Toll and demonstrated that it plays a key 
role in regulating antibacterial gene expression through the 
NF-κB-like signaling pathway [78]. This seminal discov-
ery paved the path for the discovery of its human counter-
part in which Janeway et  al. [79] demonstrated that the 
mammalian Toll homolog induced expression of genes 
encoding B7 and cytokines that affect the adaptive immune 
response, providing confirmation for the theory of pattern 
recognition. Researchers began a fervent search for the 
ligand of human Toll (now known as TLR4). The first clue 
came when researchers found that C3H/HeJ mice were 
unresponsive to bacterial lipopolysaccharide (LPS) and 
mapped the genetic locus required for LPS responsiveness 
to TLR4 [80, 81]. Subsequent studies that attempted to 
clarify this ligand-receptor interaction proved to be diffi-
cult until the other protein in the receptor complex, MD2, 
was discovered [77, 82]. Since then, studies by many 
groups have identified multiple other members in the TLR 
family and elucidated many of their ligands [83]. For their 
efforts in discovering the toll receptors in Drosophila, 
Bruce Beutler and Jules Hoffmann won the Nobel Prize in 
Physiology or Medicine in 2011. TLRs are now the most 
well characterized PRRs and it is established that different 
TLR members recognize a variety of PAMPs. Up to 13 
TLRs have been identified in mice but only 10 are present 
in humans as TLR11, 12 and 13 have been lost from the 
human genome [84]. In contrast, the C-terminal of 
TLR10 in mice is disrupted by a retrovirus insertion and is 
nonfunctional. For a detailed look at the history of TLRs, 
see Table 2.2.

As our understanding of TLRs has expanded in the past 
couple of decades, increasing evidence has indicated that 
TLRs are not limited to recognizing PAMPs but can also 
bind to signals released from damaged tissues, a notion first 
pioneered by Polly Matzinger who proposed the danger the-
ory as an alternative to the mechanism of immunity initiation 
[92]. Non-pathogen associated material that leads to tissue 
injury and other endogenous ligands released during cellular 
injury such as chromatin bound high mobility group 1 and 
heat shock proteins also bind and activate TLR signaling 
[93–97]. Thus, in addition to being the first line of defense 
against pathogens, TLRs also survey the expression of 
danger-associated molecular patterns (DAMPs) seen in tis-
sue injury (Fig. 2.1). TLR activation by DAMPs results in 
sterile inflammation that may play a role in chronic skin 

Key Points

•	 Toll-like receptors (TLRs) represent a key receptor 
family of the innate immune response that recog-
nize pathogen associated molecular patterns as well 
as damage associated molecular patterns

•	 TLRs play essential roles in shaping both innate 
and adaptive immune responses

•	 TLRs work through two pathways:
–– Adaptor protein myeloid differentiation factor 

88 (MyD88) to activate transcription factor 
NF-κB and MAP kinases (used by all TLRs 
except TLR3)

–– Adaptor protein TIR domain-containing adaptor 
protein inducing interferon-beta (TRIF) depen-
dent pathway used by TLR3 and TLR4 that 
results in type I interferon expression

•	 TLRs play diverse roles in multiple dermatologic 
diseases and mutations in TLR signaling pathways 
have been mapped in human patients, some exam-
ples include:
–– TLR2, TLR9 and TOLLIP polymorphisms have 

been identified in atopic dermatitis patients
–– Activation of TLR4 by nickel, cobalt and palla-

dium in allergic contact dermatitis
–– LL-37, an antimicrobial peptide, complexes with 

self DNA and activates plasmacytoid dendritic 
cells to create a DAMP, and drive psoriatic 
inflammation

•	 Studies in modulating TLRs for treatment strategies 
have yielded promising results in a variety of der-
matological diseases including treatment of psoria-
sis, melanoma etc.
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Table 2.1  Toll-like receptors (TLRs) in dermatological disease

TLR Disease Comments

1 Tuberculoid TLR1 favors Th1 phenotype [11]

Leprosy TLR1 I602S mutation protects from M. leprae [12]

Psoriasis TLR1 expression increased in keratinocytes [13]

Lyme disease TLR1 polymorphism associated with severe disease [14, 15]

Syphilis Increased neurosyphilis risk in TLR1 polymorphisms [16]

2 Acne vulgaris P. acnes stimulates TLR2 and causes hypercornification of 
sebaceous glands [17]

Retinoids exert anti-inflammatory effects via TLR2 [18–20]

Atopic dermatitis TLR2 R753Q mutation associated with severe disease 
[21–23]

TLR2 signaling necessary for skin barrier repair [24–26]

TLR2 skews cytokine profile towards a Th2 phenotype 
[27–30]

Psoriasis Increased TLR2 expression in keratinocytes [13]

Staphylococcus aureus infection TLR2 deficiency led to increased susceptibility [31, 32]

Leprematous leprosy Associated with Arg677Trp mutation in Korean population 
[33]

Arg677Trp mutation: decreased cytokine production [34]

Syphilis Lipoproteins stimulate TLR2 [35]

Increased neurosyphilis risk in TLR2 polymorphisms [16]

Lyme disease Outer surface proteins stimulate TLR2 [36]

Patients with Arg753Gln mutation secreted less 
proinflammatory cytokines [37]

Candidiasis Phospholipomannans and glycans stimulate TLR2 [38, 39]

HSV Glycoproteins stimulate TLR2 [40, 41]

TLR2−/− animals are more susceptible to HSV encephalitis [42]

3 Psoriasis Mutation in AP1S3, gene required for TLR3 trafficking, 
associated with pustular psoriasis [43]

HSV TLR3−/− astrocytes fail to produce type I IFN [44]

Humans with TLR3 deficiencies are more susceptible to 
HSV encephalitis [10]

4 Acne vulgaris P. acnes LPS stimulates TLR4 [45]

Allergic contact dermatitis Nickel, cobalt and palladium binds and activates TLR4 
signaling [46–48]

Psoriasis Increased HSPs that can activate TLR4 signaling [49, 50]

Syphilis Lipoproteins stimulate TLR4 [35]

Candidiasis Polysaccharides activate TLR4 [38, 39]

Important for neutrophil recruitment [51]

UV exposure TLR4 hyporesponsiveness leads to impaired TNFα 
production [52]

TLR4-MyD88 axis deficiencies led to increased cell survival 
and upregulation of necroptic markers [53]

TLR4 deficiency led to increased nucleotide excision repair 
[54]

6 Syphilis Increased neurosyphilis risk in TLR6 polymorphisms [16]

(continued)

2  Toll-Like Receptors
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Table 2.1  (continued)

TLR Disease Comments

7 Psoriasis Imiquimod, TLR7 agonist, drives psoriasis formation [55, 56]

Systematic lupus erythematous (SLE) pDCs bind self nucleic acids to stimulate IFN production via 
TLR7 and 9 [57]

Small nuclear RNA binds and activates TLR7 and 8 [58]

Gene duplications of TLR7 increases autoantibody 
production [59]

Chronic TLR7 and 9 stimulation leads to glucocorticoid 
resistance [60]

Dual TLR7 and TLR9 inhibitor led to decreased 
autoantibody production in animals and being tested in 
humans [61, 62]

Melanoma Imiquimod and 852A, TLR7 agonist, has been shown to 
have antitumor effects [63, 64]

Mycosis fungoides Imiquimod shown to have clinical responses [65]

UV exposure Imiquimod enhances DNA repair and decreased DNA 
damage [66]

8 SLE Small nuclear RNA binds and activates TLR7 and 8 [58]

9 Atopic dermatitis Polymorphisms associated with disease [67]

Psoriasis DNA complex with LL-37 stimulates TLR9 to drive 
IFNα-mediated inflammation [68]

SLE pDCs bind self nucleic acids to stimulate IFN production via 
TLR7 and 9 [57]

Paradoxical role as TLR9 deficient mice promoted SLE 
development [69, 70]

Chronic TLR7 and 9 stimulation leads to glucocorticoid 
resistance [60]

Dual TLR7 and TLR9 inhibitor led to decreased 
autoantibody production in animals and being tested in 
humans [61, 62]

Melanoma PF-3512676, TLR9 agonist, currently being tested in 
melanoma patients with other modes of therapy [71–73]

Mycosis fungoides TLR9 agonist demonstrated to have antitumor activity [74, 75]

Table 2.2  Historical timeline: discovery of Toll-like receptors

Discovery

1979 Identification of the dorsal mutation [85]

1984 Characterization of toll mutation and other dorsoventral mutations

1989 Janeway proposes the theory of pattern recognition [2]

1993 Demonstration that NF-κB is required for Drosophila antimicrobial resistance 209

1996 Drosophila Toll identified; found to be required for resistance to fungal infections [78]

1997 Human homologue of Drosophila Toll, signals activation of adaptive immunity [79]

1998 TLR4 is lipopolysaccharide receptor [80, 86]

1999 MD2 identified as coreceptor for TLR4-LPS interaction [82]

2000 TLR9 recognizes bacterial DNA [87]

2000 TLR2 can pair with TLR6 to recognize bacterial proteins [88]

2000 TLR2 can also associate with TLR1 [88]

2001 TLR3 mediates response to viral double-standed RNA [89]

2001 TLR5 detects flagellate protein in whiplike tails of bacteria [90]

2004 TLR8 (humans), TLR 7 (mice) recognize single-stranded RNA [91]

2011 Bruce Beutler and Jules Hoffmann awarded the Nobel Prize in Medicine for their role in the 
identification of TLRs
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diseases such as psoriasis (Fig. 2.2) [99]. For a detailed look 
at PAMPs and DAMPs that activate specific TLRs, please 
see Table 2.3.

�Toll-Like Receptors in Innate and Adaptive 
Immunity

As mentioned previously, the pattern recognition theory and 
identification of TLRs provided the missing link between 
innate and adaptive immune responses. It is now established 
that specific ligands activate distinct TLRs and other PRRs, 
which result in the expression of molecules that shape and 
fine-tune the adaptive immune response depending on the 
stimulus involved. On the innate immunity side, activation of 
TLRs leads to the release of antimicrobial peptides and che-
mokines that recruit phagocytic cells to the site of infection 
[120]. TLR activation also induces maturation of dendritic 
cells to potent APCs via the upregulation of surface expres-
sion of MHCII and costimulation markers such as CD80 and 
CD86 [121].

TLR-mediated effects on the adaptive immune response 
can be shaped via APCs or T cells directly. It is well 
known that physical interaction between APCs and T cells 
requires two signals with signal 1 being the antigen spe-
cific signal via MHCII and signal 2 being the expression 
of costimulation molecules on dendritic cells [122]. TLR 
stimulation in dendritic cells results in increased expres-
sion of MHCII, CD80 and CD86 and is instrumental in 
promoting both signals required for robust antigen-spe-
cific T cell responses [5, 76]. TLR activation on dendritic 
cells also influences cytokine production, which provides 
key signals for helper T cell differentiation into different 
phenotypes with distinct effector functions [123]. For 
example, TLR-activated dendritic cells produce IFNγ in 
response to E.coli LPS stimulation which is associated with 
T helper cell 1 (Th1) differentiation while P. gingivalis LPS 
induces expression of IL-5, IL-13 and IL-10, cytokines 
classically associated with Th2 differentiation [124]. 
Stimulation of APCs with TLR ligands also leads to inter-
leukin-6 (IL-6) secretion, which can result in the loss of 
suppressor activity by regulatory T cells, allowing for a 
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Fig. 2.1  Schematic diagram of 
TLR activation by various 
established endogenous and 
exogenous ligands
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more effective immune response [125]. Alternatively, 
TLRs are also expressed in T lymphocytes and TLR 
ligands can modulate T cell function directly [126]. Direct 
TLR2 stimulation of T lymphocytes in the absence of 
APCs has been shown to induce proliferation of regula-
tory T cells [127]. Intrinsic B cell TLR activation medi-
ates B-cell proliferation and antibody production to 
T-dependent antigens and similar results were seen in 
human B cells [128, 129]. Thus, while TLRs are tradition-
ally associated with the innate immune response, they 
also play key roles in shaping the adaptive immune 
response and can directly affect the functions of both  
T and B lymphocytes.

�Expression of Human TLRs in Skin

Based on their cellular localization, TLRs can be broadly 
classified into two groups [84]. TLRs 1, 2, 4, 5 and 6 are 
expressed on the cell membrane and recognize predomi-
nantly microbial membrane components. TLRs 3, 7, 8 and 9, 

on the other hand, are expressed in intracellular components 
such as the endoplasmic reticulum, endosomes and lyso-
somes and primarily recognize microbial nucleic acids. As 
the primary physical barrier against the environment, it is not 
surprising that many cell types residing in the skin express a 
variety of TLRs to survey for pathogens as well as tissue 
damage signals.

In the epidermis, keratinocytes constitutively express 
messenger RNA (mRNA) for TLRs 1–6, 9 and 10 [13,  130]. 
With the exception of TLR10, many studies have demon-
strated that keratinocyte TLRs are functional and respond 
to their respective ligands [130, 131]. Langerhans cells 
(LCs) express TLRs 1–10 but are most responsive to TLRs 
2, 3, 7 and 8 ligands [132, 133]. In the dermis, stimulation 
of skin/muscle fibroblasts with ligands to TLRs 2, 3, 4, 5 
and 9 led to production of specific chemokines [134, 135]. 
Expression of human TLRs has also been detected on skin 
resident and trafficking immune cells such as neutrophils, 
macrophages, dendritic cells, dermal endothelial cells, 
mucosal epithelial cells, B cells, and T cells (Table  2.4) 
[133, 145].

UV radiation exposure

Psoriasis

Allergic contact dermatitis

Pathogenesis of:

Innate
immunity

Adaptive
immunity

TLRs

Other PRRs

PAMPs DAMPs 
HSPs, Hyaluronic acid
fragments, fibrinogen,

defensins etc.

Bacterial cell wall products,
dsRNA,fungal components,

flagellin, CpG DNA, profilin etc.

Fig. 2.2  The interplay of 
PAMPs and DAMPs in the 
activation of TLRs as well as 
other PRRs. Activation of these 
receptors influences both arms of 
immunity and dysregulation of 
these pathways can lead to 
inflammation and the 
development of a variety of 
dermatological diseases [98]
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�Toll-Like Receptor Signaling

All members of the TLR family are type I transmembrane 
proteins and contain: (1) extracellular leucine-rich repeats 

that mediate the recognition of PAMPs, (2) a transmembrane 
domain and (3) an intracellular tail that contains the Toll/
IL-1R (TIR) domain, which bears homology to the IL-1 
receptor [84, 146]. Activating ligands lead to homo- or 

Table 2.3  TLRs: exogenous ligands (PAMPs) vs. endogenous ligands (DAMPs)

TLR Exogenous ligands Endogenous ligands Signaling pathway

1 Triacyl lipoproteins (w/TLR2) hBD3 Heterodimerizes with TLR2; 
MyD88-dependent signaling

[100, 101]

2 Triacyl lipoproteins (w/TLR1)
Diacyl lipoproteins 
lipoteichoic acid, zymosan  
(w/TLR6)

HMGB1, HSPs, Hyaluronan, 
Biglycan, Versican, 
Antiphospholipid antibodies

Heterodimerizes with TLR1 or 
TLR6; MyD88-dependent 
signaling

[93, 97, 102–106]

3 dsRNA Endogenous mRNA from tissue 
necrosis

TRIP dependent signaling to 
induce antiviral genes

[100, 107, 108]

4 LPS, viral envelope proteins HMGB1, HSPs, Hyaluronan, 
Biglycan, Heparan sulphate, 
hBD2, fibronectin, s100 proteins
Fibronectin extra domain A

MyD88 and TRIF/TRAM 
dependent signaling

[93, 97, 102–104, 
109–113]

5 Flagellin None identified MyD88-dependent signaling [100, 114]

6 Diacyl lipoproteins
Zymosan
Lipoteichoic acids

HMGB1, HSPs, ECM  
(with TLR2)

Heterodimerizes with TLR2; 
MyD88-dependent signaling

[100, 106]

7 ssRNA Antiphospholipid antibodies
ssRNA

MyD88-dependent signaling [58, 115, 116]

8 ssRNA Antiphospholipid antibodies
ssRNA

MyD88-dependent signaling [58, 115, 116]

9 CpG-DNA DNA released from 
acetaminophen-induced 
hepatoxicity
Mitochondrial DNA
Immune complexes

MyD88-dependent signaling [93, 117, 118]

10 Unknown Unknown MyD88-dependent signaling [119]

HMGB1 high mobility group box 1, HSPs heat shock proteins, double stranded RNA (dsRNA), LPS lipopolysaccharide, hBD3 human β-defensin 
3, hBD2 human β-defensin 2, ECM extracellular matrix

Table 2.4  TLR expression in different cell types

Cell type TLR1 2 3 4 5 6 7 8 9 10

Keratinocytes [13, 130] + + + + + + + +

Melanocytes [136, 137] + + + + + + +

LC [132, 133] + + + + + + + + + +

Skin endothelial cells [138] + + + ++ + + + + + +

FB [134, 135] + + + + +

Adipocytes [139, 140] + + + + +

MC [141] + + + + + + + +

mDCa [142] + + + + + + + +

pDC [142] +/− +/− + + +/−

MΦb [143] + + + + + + + + + +

N [144] + + + + + + + + +

B cell [143] + + + + + + + + ++ ++

T cell [133, 143] + + + + + + + + + +

++ strong expression, + expressed, +/− low level expression, LC Langerhans cell, MC mast cell, FB fibroblasts, mDC myeloid dendritic cell,  
pDC plasmacytoid dendritic cell, MΦ macrophage, N neutrophil
aRepresentative of all myeloid DCs, TLR expression varies within myeloid DC subsets
bTLR1-10 transcripts are detected but predominantly express 1, 2, 4, 5 and 8
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heterodimerization of one TLR with another TLR and result 
in the dimerization of TIR domains, which serve as the scaf-
fold for downstream adaptor proteins. Important adaptor 
proteins in TLR signaling include myeloid differentiation 
factor 88 (MyD88), TIR domain-containing adaptor protein 
inducing interferon-beta (TRIF) and TRIF-related adaptor 
molecule (TRAM). MyD88 and TRIF represent distinct sig-
naling pathways that TLRs utilize that result in activation of 
specific gene programs in response to different activating 
stimuli.

MyD88 is an adaptor protein that is used by most TLRs 
with the exception of TLR3 for the initiation of downstream 
signaling. It should be noted that TLR4 is unique in that its 
activation results in both MyD88-dependent and TRIF-
dependent pathways. In the MyD88 dependent pathway, 
MyD88 activation results in the recruitment of interleukin-1 
receptor-associated kinases 1 (IRAK1) and IRAK4 [147]. 
IRAK4 then activates IRAK1, leading to IRAK1 autophos-
phorylation and the dissociation of both members from 
MyD88 and downstream interaction with tumor necrosis fac-
tor receptor–associated factor 6 (TRAF6), an E3 ubiquitin 
ligase [146]. This signaling complex results in the activation 
of NF-κB and mitogen-activated protein kinases (MAPKs) 
and the production of inflammatory cytokines (Fig. 2.1) [84]. 
Although all TLRs utilize MyD88 as an adaptor protein, it is 
important to recognize that each TLR utilizes different com-
binations of adaptor proteins and kinases to generate an 
immune response that is appropriate for the initial activating 
stimuli. For instance, activation of TLR2 by lipoproteins 
leads to TNFα expression while CpG stimulation of TLR9 
results in the expression of IFN-α and TNFα [148].

The TRIF-dependent signaling pathway is mainly utilized 
by TLR3 and TLR4. TLR3 activation results in TRIF recruit-
ment and subsequent activation of TANK-binding kinase 1 
(TBK1) and interferon regulatory factor 3 (IRF3), a transcrip-
tion factor required for induction of type I IFNs [148]. TLR4 
requires an additional adaptor protein TRAM to stabilize its 
interaction with TRIF. The discovery of TRIF provided the 
first molecular explanation for why only TLR3 and TLR4, 
but not TLR2, can induce IFN-β secretion. Indeed, TRIF-
deficient mice were incapable of secreting IFNβ upon stimu-
lation by TLR3 and TLR4 ligands [149]. The TRIF-dependent 
pathway also results in the activation of NF- κB and MAPKs.

�Negative Regulators of TLR Signaling

TLR-mediated signaling plays a key role in the regulation of 
immunity and excessive TLR signaling has detrimental 
effects that contribute to autoimmune and inflammatory dis-
ease development [150, 151]. Not surprisingly, TLR signal-
ing pathways are tightly controlled and multiple negative 
regulators of TLR signaling exist at various levels to ensure 

that immune homeostasis is maintained [100]. IRAK-M, 
Toll-interacting protein (Tollip) and Suppressor of Cytokine 
Signaling 1 (SOCS-1) are examples of well-described inhib-
itors of the TLR signaling pathway. IRAK-M, for instance, is 
thought to prevent the dissociation of IRAK4 and IRAK1 
from MyD88 [152, 153]. Accordingly, IRAK-M−/− macro-
phages secrete higher levels of inflammatory cytokines and 
IRAK-M−/− animals are more vulnerable to inflammatory-
mediated damage in lupus and lung infection models [154–
156]. It is thought that specific genotypes of IRAK-M are 
associated with sepsis risks (see Table 2.5).

Another negative regulator in the TLR pathway is Toll-
interacting protein (TOLLIP), which limits MyD88-
dependent NF-κB activation at two different levels [181, 
182]. First, overexpression of TOLLIP has been shown to 
inhibit TLR4– and TLR2–mediated NF-κB activation. 
TOLLIP also binds directly to IRAK1 to inhibit IRAK1 
autophosphorylation and downstream recruitment of signal-
ing proteins required for NF-κB activation [182, 183]. In 
contrast to IRAK-M−/− mice, TOLLIP deficient animals did 
not exhibit any overt inabilities to limit the inflammatory 
response [184]. However, TOLLIP−/− macrophages secreted 
lower levels of IL-6 and TNFα when stimulated with low 
doses of LPS, suggesting that TOLLIP is involved in fine-
tuning inflammation in response to different levels of stimu-
lation. Polymorphisms of TOLLIP have been associated with 
atopic dermatitis and inflammatory bowel diseases (see 
Table 2.5 for other negative TLRs and their association with 
human diseases). As the role of negative regulators in disease 
pathogenesis becomes increasingly clear, there is promise 
that specific targeting of these molecules may lead to the 
development of new therapeutics.

TLR and Dermatologic Diseases

Acne Vulgaris

Acne vulgaris, a common disorder involving the piloseba-
ceous unit, is one of the most prevalent conditions in derma-
tology (see also Chap. 24). It affects more than 45 million 
people in the United States and is characterized by the pres-
ence of inflammatory papules, pustules, nodules and nonin-
flammatory comedones [76, 185]. The pathogenesis of acne 
is multifactorial but it is generally thought to involve 
increased sebum production, altered follicular keratinization 
and an inflammatory response to Propionibacterium acnes, a 
Gram-positive anaerobe that is a part of normal skin flora, a 
finding that has been confirmed by recent skin microbiome 
mapping projects [186, 187]. It is thought that the host 
immune response [188], and not P. acnes overgrowth, is the 
main determinant of disease as PBMCs from acne vulgaris 
patients produce higher levels of IFNγ, IL-12 and IL-8. 
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However, the notion that the host immune response is the 
main contributor of disease has been challenged by a recent 
study that showed that acne vulgaris patients harbor different 
P. acnes strains compared to healthy controls [189].

Early studies demonstrated that soluble factors produced 
by P. acnes stimulated proinflammatory cytokine production 
but the exact mechanisms were poorly understood [190, 191]. 
After the discovery of TLRs, Kim et  al. demonstrated that 
P. acnes-mediated induction of proinflammatory cytokines 
was dependent on TLR2 expression and that TLR2 was abun-
dantly expressed on perifollicular macrophages [192]. It was 
thought that P. acnes possessed two potential cell wall com-
ponents, LPS and peptidoglycan (PG), that can serve as 
ligands and activate TLR2 and TLR4 to mediate its down-
stream proinflammatory response [76]. Indeed, distinct 
strains of P. acnes with presumably varied modifications in 
their cell wall components differentially induced upregula-
tion of hBD2, and IL-8 mRNA levels in keratinocytes in a 
TLR2- and TLR4-dependent manner [45]. Subsequent stud-
ies have also found that expression of TLR2 and TLR4  in 
keratinocytes increased in the epidermis of inflammatory 

acne lesions and P. acnes exposure led to an increase in TLR2 
expression [192, 193]. Other than proinflammatory cytokine 
production, PAMP stimulation also caused hypercornification 
of sebaceous glands in a TLR2-dependent manner [17]. 
While the host immune response is an essential component of 
acne vulgaris pathogenesis, the molecular mechanisms that 
differentiate healthy controls and acne vulgaris patients 
remain poorly characterized. As mentioned earlier, recent 
studies have showed that different P. acnes strains are found 
in acne vulgaris patients and there is evidence that these 
strains can modulate cutaneous innate immunity differen-
tially [189, 194]. Specifically, Jasson et al. demonstrated that 
only some strains have the capacity to recruit TLR2 receptors 
and trigger a downstream inflammatory response [194]. It 
will be interesting to see if the differential capacity of TLR2 
recruitment by various P. acnes strains affects keratinocyte 
proliferation in pilosebaceous units and have clinical implica-
tions in acne vulgaris treatment strategies in the future.

Interestingly, retinoids, one of the treatments commonly 
used for acne vulgaris, have been shown to exert anti-
inflammatory effects by decreasing local expression of TLR2 

Table 2.5  Negative regulators of Toll-like receptors

Negative regulator Mechanism of action Role in human diseases References

Protein regulators
IRAK-M Prevents IRAK1/IRAK4 dissociation

Negatively regulates alternative NF-κB 
activation after TLR2 stimulation

G/G genotype associated with 
increased sepsis risk
A/A genotype is protective against 
sepsis
Possible role in IBD

[153, 157–160]

MyD88s MyD88 antagonist Upregulated in septic patients [161–163]

TOLLIP Autophosphorylates IRAK1 Polymorphisms mapped in Atopic 
Dermatitis
IBD

[164, 165]

A20 De-ubiquitylates TRAF6 Polymorphisms and mutations 
associated with rheumatoid arthritis, 
psoriasis, Sjogren’s Syndrome, SLE, 
lymphomas

[166, 167]

SOCS1 Suppresses IRAK by promoting their 
degradation

Decreased SOCS1 expression in 
SLE
MS, RA

[168, 169]

SIGIRR Orphan receptor that suppresses 
inflammation

No clear demonstrated role in 
human disease

[170, 171]

ABIN-1 Ubiquitin binding protein that inhibits 
TLR/C/EBPβ signaling

Protects again psoriasis [172, 173]

MicroRNAs Targets 3′-untranslated regions to modulate gene expression

miR-146 Inhibits IRAK1 and TRAF6 RA
Psoriatic arthritis

[174–176]

miR-9 Blocks NF-κB Leukemias
Cancer

[177, 178]

miR-21 Blocks NF-κB and PCDC4 Cancer [175, 179]

miR-155 Stimulates TNFα
Blocks TAK1 activation

Cancer [180]

IRAK-M IL-1R-associated kinase M, MyD88s myeloid differentiation factor 88 short, TOLLIP Toll-interacting protein, SOCS1 suppressor of 
cytokine signaling 1, ABIN-1 A20 binding and inhibitor of NF-κB-1, SIGIRR single immunoglobulin IL-1 related receptor, SLE systemic lupus 
erythematous, IBD inflammatory bowel disease, RA rheumatoid arthritis, MS multiple sclerosis
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in vitro [18, 19]. These results were recently confirmed in 
human patients – systemic administration of isotretinoin in 
acne patients resulted in downregulation of TLR2 cell sur-
face expression on monocytes and decreased levels of IL-1β, 
IL-6, IL-12 as well as IL-10 release [20]. Of note, systemic 
isotretinoin decreased TLR2 cell surface expression to levels 
comparable to those seen in healthy controls. A similar 
reduction in proinflammatory cytokines was also evident and 
this effect was sustained for 6 months after the cessation of 
therapy.

�Atopic Dermatitis

Atopic dermatitis (AD) is a common chronic inflammatory 
skin condition that affects up to 3 % of adults and 15–25 % of 
children in the United States (see also Chap. 22) [195, 196]. 
Multiple defects have been identified in AD patients, includ-
ing impaired skin barrier function, reduced expression of 
antimicrobial peptides, concomitant skin infections and Th2 
skewing. Moreover, it has been demonstrated that up to 90 % 
of AD patients are colonized with Staphyloccus aureus in 
both lesional and nonlesional skin, whereas only 5 % of 
healthy controls exhibit colonization [197]. The molecular 
details underlying AD pathogenesis are currently under 
investigation but defects in the TLR signaling pathway have 
been identified in AD patients. AD patients have decreased 
TLR2 expression on their circulating monocytes and are 
impaired in their proinflammatory response to known TLR2 
ligands [198, 199]. Werfel and colleagues further reported 
that a missense mutation in the TLR2 gene (R753Q) is asso-
ciated with AD patients with a more severe phenotype, 
higher serum levels of immunoglobulin E (IgE), and greater 
susceptibility to S. aureus colonization [21–23]. TLR9 and 
TOLLIP polymorphisms have also been shown to be associ-
ated with AD patients [67, 164].

TLRs also directly affect skin barrier function by modu-
lating both physical and chemical properties of barrier func-
tion [195]. TLR2 signaling has been shown to increase the 
expression of tight junction proteins and enhance skin barrier 
repair [24, 25]. Accordingly, TLR2−/− mice demonstrated 
impaired repair responses to epidermal injury by tape-
stripping, suggesting that TLR2 may contribute to a chronic 
itch-scratch cycle often seen in AD patients. Other than 
TLR2, TLR3 signaling in response to dsRNA stimulation 
from epidermal injury also stimulates the expression of 
genes involved in permeability barrier repair [26]. In addi-
tion, TLR signaling is necessary for the keratinocyte produc-
tion of antimicrobial peptides (AMPs), a key component of 
cutaneous chemical barrier function. Previous studies dem-
onstrated that human β-defensin-2 (hBD2) and cathelicidin 
LL-37 (two AMPs important in keratinocyte defense against 
S. aureus) were significantly decreased in acute and chronic 

lesions of AD when compared to controls and patients with 
psoriasis [200]. LL-37 and hBD2 production, in turn, is 
dependent on intact TLR2 signaling after S. aureus,  
S. epidermis and skin injury [201–203].

Consistent with their tendency towards a Th2 immune 
response, AD patients often suffer from other atopic diseases 
such as allergic rhinitis, asthma and seasonal allergies. Early 
lesions in AD have a Th2 cytokine profile, which has been 
shown in murine models to promote preferential binding to 
S. aureus [27]. In support of the key role Th2 cytokines 
(IL-4, IL-13 and TSLP) play in AD pathogenesis, patients 
with moderate to severe AD treated with dupilumab, an anti-
body that targets the Th2 cytokine IL-4, showed remarkable 
improvement in their symptoms [28]. Increasing evidence 
suggests that TLRs affect the balance between Th1 and Th2 
cytokines in the skin. For example, TLR2 stimulation by 
purified S. aureus-derived diacylated lipopeptitde induces 
expression of Th2 cytokines like thymic stromal lymphopoi-
etin (TSLP) by keratinocytes [29]. TLR2 ligands also play a 
role in exaggerating and prolonging Th2-mediated inflam-
mation in AD [26]. TLR2 also has complex roles in modulat-
ing other arms of immunity and has been shown to affect 
mast cell degranulation as well as subsequent IgE antibody 
production by B cells [30]. Collectively, these data indicate 
that TLRs, especially TLR2, influence multiple aspects of 
AD pathogenesis, including barrier function, S. aureus colo-
nization as well as skewing of the immune response towards 
a Th2 phenotype. Further dissection of how TLRs affect the 
various altered skin functions in AD will likely lead to devel-
opment of new therapeutic strategies.

�Allergic Contact Dermatitis

Allergic contact dermatitis (ACD) is a common skin disorder 
caused by type IV delayed hypersensitivity reactions to skin-
exposed chemical allergens (see also Chap. 23) [204]. In the 
clinically silent phase of sensitization, dendritic cells migrate 
to skin-draining lymph nodes and present contact allergens 
to naïve T lymphocytes, which may take weeks to months of 
repeated exposures to low molecular weight compounds. 
Upon re-exposure to the contact allergen, effector T cells are 
recruited back to the skin to mediate the type IV delayed 
hypersensitivity reaction (known as the ‘elicitation phase’) 
seen in ACD.  It is estimated that more than 3000 contact 
allergens have been described; some of the common contact 
allergens include nickel, fragrances and hair dyes [98]. 
Martin et al. [205] first demonstrated a role for TLRs in ACD 
by showing that mice lacking both TLR2 and TLR4 failed to 
develop contact hypersensitivity (CHS), the experimental 
model used to study ACD.  Importantly, CHS development 
was dependent on IL-12 expression that was stimulated by 
either TLR2 or TLR4 activation of dendritic cells as dendritic 
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cells from TLR2−/− TLR4−/− double knockout animals were 
resistant to CHS stimulation in wild type animals. 
Interestingly, CHS developed normally in germ free animals, 
suggesting that TLR2 and TLR4 activating signals were 
most likely derived from endogenous ligands such as DAMPs 
rather than microbial ligands. Further analyses revealed that 
contact allergens lead to reactive oxygen species (ROS) pro-
duction, which stimulates the degradation of high molecular 
weight hyaluronic acid (HA) to low molecular weight HA 
products [206]. Low molecular weight HA, in turn, can serve 
as endogenous ligands for TLR2 and 4 signaling and potenti-
ate an inflammatory cascade [207, 208]. A recent study by 
Gallo and colleagues [209], however, has challenged this 
notion that HA alone can cause ACD.  The group overex-
pressed hyaluronidase, an enzyme involved in the generation 
of low molecular weight HA in mice, and showed that small 
HA fragments alone did not lead to spontaneous cutaneous 
inflammation resembling CHS.  However, the addition of 
antigen along with small HA fragments accelerated allergic 
sensitization in a TLR4-dependent manner. Thus, rather than 
acting as the inflammatory stimuli for ACD, low molecular 
weight HA controls the antigen presentation capacity of the 
skin.

Other than DAMP-mediated activation of TLRs, nickel, 
cobalt and palladium have all been shown to bind and acti-
vate human TLR4 [46–48]. Specifically, binding of human 
TLR4 to nickel was mediated by histidine residues missing 
in murine TLR4 and provided molecular evidence for why 
mice are naturally resistant to nickel-induced CHS [48]. 
Whether nickel alone is sufficient in driving CHS remains 
unknown although the natural resistance to nicked-induced 
CHS seen in mice can be overcome by the addition of LPS 
[210], suggesting that microbial ligands that activate TLR4 
may help to amplify the stimulus to promote sensitization to 
contact allergens [98]. Together, these studies provide evi-
dence that contact allergens like nickel, DAMPS such as low 
molecular weight HA and PAMPs are all capable of activat-
ing TLRs in ACD. However, the relative contribution of each 
in either the sensitization phase or elicitation phase remains 
unknown and whether different TLR-expressing skin cells 
maybe involved in specific phases present exciting future 
research opportunities for learning more about ACD 
pathogenesis.

�Psoriasis

Psoriasis is a chronic, recurrent, inflammatory disease char-
acterized by dry, scaly, circumscribed erythematous plaques 
predominantly located in the scalp, nails, extensor surfaces 
of the limbs, umbilical region, and sacrum (see also 
Chap.  21). The pathogenesis of psoriasis, which is charac-
terized by the predominance of Th1/Th17 cytokine profiles, 

involves hyperproliferation and parakeratosis of keratino-
cytes, which ultimately leads to thickening of the epidermis 
[99]. Many advances have been made in understanding the 
mechanisms involved in psoriasis and developments of new 
immunosuppressive and biologic treatments. Not surpris-
ingly, TLRs have also been found to play a role in the patho-
genesis of psoriasis. A study demonstrated that TLR1 and 
TLR2 expression was increased in the suprabasal layer of 
keratinocytes in psoriasis patients compared to skin isolated 
from normal controls [13]. In contrast, TLR5 expression in 
basal keratinocytes from psoriatic patients was decreased 
compared to healthy controls. Other studies have found 
increased TLR1, 2, 4, 5 and 9 expression in keratinocytes 
isolated from psoriatic lesions [211]. A recent study also 
identified mutations in the gene AP1S3, a protein involved in 
TLR3 trafficking, that are associated with pustular psoriasis 
[43]. Furthermore, application of imiquimod, a known TLR7 
agonist, is known to trigger psoriasis in both humans and 
animal models [55,  56]. It is thought that imiquimod acti-
vates TLR7 signaling on DCs to drive psoriatic plaque for-
mation by activating the production of IL-17 and IL-22 by 
innate lymphoctyes. ABIN-1, a negative regulator of TLR 
signaling, protects against psoriasis development by prevent-
ing exaggerated NF-κB and MAPK signaling in response to 
TLR7 agonists [172]. Therefore, TLR expression on various 
cell types in the skin may drive psoriatic pathogenesis and it 
is plausible that different cell types maybe involved in differ-
ent phases of disease progression.

In contrast to AD patients who are more susceptible to  
S. aureus infections (see above), it is generally accepted that 
psoriatic plaques are relatively resistant to S. aureus infec-
tion [212]. It is thought that increased AMP production such 
as hBD2 and syndecans seen in psoriatic plaques is partially 
responsible for this phenotype [213, 214]. Keratinocyte 
growth factor, TGFα, has been found at high levels in psori-
atic lesions and is responsible for increased TLR5 and TLR9 
expression as well as TLR-dependent release of AMPs and 
proinflammatory cytokines [215]. While the increased pro-
duction of AMPs is beneficial against pathogenic microor-
ganisms, it has been postulated that they may also contribute 
to inflammation by modulating host immune receptors such 
as TLRs [185]. For example, LL-37 has been shown to com-
plex with self DNA to create a novel DAMP and activate 
plasmacytoid dendritic cells (pDCs) via the TLR9 pathway 
and drive inflammation in psoriatic skin by stimulating IFNα 
production [68]. A recent study showed that LL-37 and an 
alternatively processed cathelicidin peptide KS-30 also stim-
ulate keratinocytes to produce more type I IFNs but this was 
not dependent on its complexed DNA that was important for 
pDC activation [216].

Other than AMPs, heat shock protein (HSP) expression is 
also thought to contribute to TLR-mediated inflammation. 
HSP is induced by exposure to microbial pathogens and 
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other stressful stimuli [49]. Heat shock protein 27, 60, 70 and 
90 have been shown to be overexpressed in psoriasis [49, 50] 
and can trigger an innate immune response through TLR4 on 
APCs, resulting in the secretion of TNFα, IL-12, and other 
Th1 cytokines. They also may act on the adaptive immune 
response by serving as autoantigens for self-reactive T cells 
that migrate into psoriatic lesions.

These discoveries are opening doors for novel treatments 
in psoriasis (see Chaps. 43). It is thought that systemic and 
topical retinoids used in the treatment of psoriasis may con-
trol inflammation through their inhibitory effects via TLR2 
[76]. Monomethylfumarate (MMF), a bioactive metabolite 
of fumaric acid ester, is an immunotherapy for psoriasis that 
causes decreased production of Th1 cytokines and lympho-
cytopenia [217]. Monomethylfumarate was shown to 
decrease DC response to LPS and decreased IL-12p70 and 
IL-10 production. Etanercept, a TNFα inhibitor that has been 
successful in psoriasis treatment, has been shown to be asso-
ciated with decreased LL-37 expression, which may dampen 
TLR9 activation and further suppress the chronic inflamma-
tory response in psoriasis [218]. Thus, TLR dysregulation 
appears to play a role in psoriasis pathogenesis although 
whether a predominant TLR is involved remains unclear. 
Continued research in these areas will yield interesting find-
ings that will impact treatment options for psoriasis patients.

�Bacterial Infections

Bacterial cell wall components were the original ligands 
shown to stimulate TLR signaling [80, 81]. Accordingly, 
TLRs have been implicated in the pathogenesis of multiple 
bacterial diseases.

�S. aureus Infections

S. aureus, a gram-positive extracellular bacteria, is the caus-
ative agent of a variety of skin infections, including impe-
tigo, folliculitis and cellulitis (see Chap. 16) [219]. It is 
estimated that 20 % of the population is persistently colo-
nized, harboring S. aureus on the skin and the nares, while 
50 % are intermittent carriers [185]. S. aureus lipoproteins, 
peptidoglycan and lipoteichoic acid signal through TLR2/6 
and TLR2/2 dimers [220, 221]. Accordingly, TLR2 deficient 
mice were more susceptible to S. aureus infection and har-
bored higher bacterial loads in blood compared to wild type 
controls [31, 32]. Animals deficient in MyD88, the key adap-
tor protein required for all TLR signaling with the exception 
of TLR3, were also more susceptible to S. aureus infection 
and demonstrated a neutrophil recruitment defect that was 
not seen in TLR2−/− mice. In corroboration of these animal 
studies, MyD88-deficient and IRAK4-deficient patients are 

more susceptible to S. aureus infections [222]. Mutations in 
the IRAK4 kinase that led to premature stop codons have 
been shown to increase susceptibility to pyogenic infections 
caused by S. aureus as well as Streptococcus pneumonia 
[223]. Cells from patients with this disease did not respond 
to any known ligands from TLRs 1 to 6 and 9. Consistent 
with an immune deficient phenotype, these patients suffered 
recurrent pyogenic infections with minimal febrile or inflam-
matory responses.

�Leprosy

Leprosy, or Hansen’s disease, caused by Mycobacterium 
leprae, is a chronic, debilitating disease that encompasses a 
spectrum of clinical manifestations [76]. At one end, tubercu-
loid leprosy (TL) presents in patients with a strong cell-
mediated immune response, resulting in high resistance to  
M. leprae and few, localized, paucibacillary lesions. At the 
other end of the spectrum, lepromatous leprosy (LL) patients 
have a weak immune response, resulting in disseminated, 
multibacillary disease, including cutaneous and nerve 
involvement [224]. Other forms of the disease with unstable 
resistance include borderline tuberculoid, borderline, and 
borderline lepromatous. The former is Th1 mediated (e.g., 
IFNγ, IL-12, IL-18, and granulocyte-macrophage colony-
stimulating factor), whereas the latter is Th2 driven (e.g., IL-4 
and IL-10). There is accumulating evidence to suggest that 
whether a patient develops one response over the other may 
be in part due to variations in the TLR signaling pathway.

In 1999, it was discovered that mycobacteria activated 
macrophages through TLR2, resulting in production of 
TNFα, a proinflammatory cytokine [225]. An introduction of 
a dominant negative mutation in TLR2 rendered the receptor 
unresponsive to M. tuberculosis. Furthermore, a mutation in 
Arg677Trp in TLR2 has been associated with LL in the Korean 
population [33]. A separate study confirmed that this muta-
tion halts the ability of TLR2 to respond to both M. leprae 
and M. tuberculosis, confirming the clinical importance of 
this polymorphism [224].

Upon stimulation with M. leprae, patients with the 
Arg677Trp TLR2 mutation were found to have decreased pro-
duction of IL-2, IL-12, IFNγ, and TNFα, and increased IL-10 
(an anti-inflammatory cytokine) when compared to those 
with the wild-type TLR2 [34]. Thus, the mutated TLR2 
favored a Th2 phenotype, which is consistent with the 
observed LL phenotype. Based on these findings, TLR2 
appears to play a critical role in the alteration of cytokine 
profiles and determination of the type of leprosy that 
develops.

M. leprae products were shown to activate both TLR2 
homodimers as well as TLR1-TLR2 heterodimers [11]. 
Interestingly, TL lesions had higher TLR1 and TLR2 
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expression compared to LL lesions, suggesting that the 
expression of TLR2 and TLR1 contributes to the host 
response. Moreover, this study demonstrated that type 1 
cytokines enhance TLR1 and TLR2 activation, whereas the 
Th2 cytokines inhibited activation. Therefore, not only does 
innate TLR signaling affect the adaptive immune response, 
but also the adaptive immune response, through cytokine 
release, may also influence the innate response. Further evi-
dence that TLRs play a role in M. leprae pathogenesis was 
shown in a recent genetic study. Wong et  al. showed that 
individuals homozygous for the TLR1 I602S mutation, a 
functional TLR1 knockout, were protected from M. leprae 
infection, suggesting that M. leprae may have utilized TLR1 
signaling to enhance its pathogenesis [12]. These findings 
underline the complexity of the interaction between TLRs 
and M. leprae pathogenesis through evolution and provide 
additional proof that TLRs are involved in bridging the gap 
between innate and adaptive immunity.

�Syphilis

Syphilis is a contagious, sexually transmitted disease caused 
by the obligate human pathogen Treponema pallidum [76]. 
There are three stages of syphilis. In primary syphilis, a pain-
less genital ulcer, called a chancre, appears 18–21 days after 
infection. Secondary syphilis can appear as various cutane-
ous eruptions—macular, papular, or polymorphous—often 
with lesions on the palms and soles. Tertiary syphilis occurs 
3–5 years after infection. Patients may develop gummas, or 
necrotic lesions in the skin, mucous membranes, bones, or 
joints. Other complications of syphilis include neurologic 
and cardiac involvement.

It is appreciated that the outer cell wall structures of spi-
rochete bacteria like T. pallidum are vastly different from the 
typical outer membranes of Gram-negative bacteria [226]. It 
is thought that T. pallidum has developed multiple strategies 
to evade the host immune response. For instance, T. pallidum 
lacks LPS and contains a paucity of immunogenic proteins 
compared to other spirochete bacterium [227]. Thus, during 
syphilitic infection, T. pallidum membrane lipoproteins 
(LPs) serve as principal proinflammatory mediators [35]. 
Indeed, it was demonstrated that T. pallidum LPs stimulated 
TLR2- and TLR4-expressing immature murine dendritic 
cells (DCs) to release proinflammatory cytokines such as 
IL-12, IL-1β, TNFα, and IL-6. It was long thought that opso-
nization of spirochete bacteria was essential for T. pallidum 
clearance but mechanistic studies were missing until Silver 
et  al. recently demonstrated that TLR-MyD88 signaling is 
crucial for phagocytosis and bacterial clearance [227]. 
MyD88-deficient animals exhibited increased inflammation 
with a stronger infiltration of neutrophils and lymphocytes 
but still harbored a high bacterial load due to the inability of 

MyD88−/− macrophages to opsonize T. pallidum. Consistent 
with these findings, a recent clinical study found that TLR1, 
TLR2 and TLR6 polymorphisms are associated with an 
increased risk of neurosyphilis development, suggesting that 
the TLR1/TLR2 and TLR2/TLR6 heterodimers are impor-
tant in protecting against T. pallidum [16].

�Yersinia pestis

Y. pestis is a gram-negative bacillus that causes plague, a dis-
ease that killed millions of people in the “Black Death” pan-
demic. It is transmitted by the bite of the rat flea Xenopsylla 
cheopis. Clinically, painful buboes form in the axillae or 
groin, although other skin lesions such as vesicles, plaques, 
petechiae, and purpura can be seen. Yersinia outer membrane 
protein, V antigen, targets TLR2 and CD14 on the surfaces 
of APCs [228]. Interestingly, Y. pestis has specific variations 
in its LPS lipid A structure to evade TLR4-mediated host 
immune recognition [229].

�Lyme Disease

Lyme disease is a tick-borne illness caused by the spirochete 
Borrelia burgdorferi and is loosely divided into three stages. 
The primary stage is characterized by constitutional symptoms 
and erythema chronicum migrans. The second stage occurs for 
5–6 months after the rash resolves. In the tertiary phase, car-
diac, neurologic, and rheumatologic complications can occur. 
Like other spirochetes such as T. pallidum, B. burgdorferi does 
not have LPS in its outer membrane structure to stimulate 
TLR4. B. burgdorferi outer surface protein A (OspA) stimu-
lates TLR2 to activate inflammatory signaling [36]. Stimulation 
with B. burgdorferi lysate was found to increase the expression 
of TLR1 and TLR2  in all peripheral blood monocytes and 
human brain cells, but not neurons [230]. Consistent with the 
aforementioned in vitro data, TLR2 deficient animals harbored 
much higher loads of B. burgdorferi and TLR2−/− macrophages 
produced lower levels of proinflammatory cytokines [231]. 
Peripheral blood monocytes (PBMCs) isolated from patients 
with TLR2 Arg753Gln mutations also secreted less proinflam-
matory cytokines [37]. Interestingly, the lower levels of TNFα 
and IFNγ were protective against late stages of disease such as 
lyme arthritis development.

�Candidal Infections

Candida albicans is a dimorphic fungi that causes cutaneous 
and mucocutaneous candidiasis and causes severe infec-
tions in immunocompromised individuals (see Chap. 19). 
It has been demonstrated that the immune response against 
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yeast phospholipomannans and glycans involves TLR2, 
causing upregulation of TNFα via the NF-κB pathway [38, 
39]. Candidal cell polysaccharide mannan most likely acti-
vates TLR4 as anti-CD14 and anti-TLR4 antibodies (but 
not anti-TLR2 antibodies) blocked mannan-induced cyto-
kine production [38, 39]. When stimulated with C. albicans, 
TLR4 defective macrophages expressed lower levels of 
neutrophil chemokines and impaired neutrophil recruit-
ment [232]. Consistent with the animal model data, killing 
of C. albicans in human keratinocytes was shown to be 
dependent on TLR2 and TLR4 [51]. More recent work has 
also implicated a role for TLR7 in IL-12 production in 
response to fungal RNA [233]. TLR7 and TLR9 deficient 
animals harbored higher fungal load compared to wild type 
animals but whether this was dependent on IL-12 was not 
studied. Together, these studies suggest that TLRs work dif-
ferently to foster an immune response against C. albicans – 
TLR4 activation leads to recruitment of neutrophils; TLR2 
mediates the production of TNFα and TLR7 is important in 
the IL-12 response against candidal infections.

�Herpes Simplex Virus

Viruses are obligate intracellular parasites that rely on host 
protein machinery to complete their replication cycles (see 
Chap. 17). Due to their intracellular location, viral nucleic 
acids are usually recognized in intracellular components 
such as endolysosomes by various TLRs. Viral proteins 
released during replication may also stimulate TLRs on cell 
surfaces. Herpes simplex virus type 1 (HSV-1) and type 2 
(HSV-2) are double-stranded DNA (dsDNA) viruses that 
commonly infect skin and mucosa. HSV-1 generally pro-
duces vesicular outbreaks at the orolabial or ocular mucosa, 
whereas HSV-2 typically infects genital mucosa and renders 
patients more susceptible to other sexually transmitted infec-
tions. However, both strains of the virus can infect either 
physical location.

Herpes simplex virus glycoproteins gH/gL and gB 
have been shown to stimulate TLR2 and activate NF-κB 
signaling [40, 234]. TLR2-mediated NF-κB activation, 
however, may have detrimental effects as TLR2 knockout 
mice with decreased cytokine responses are resistant to 
HSV encephalitis [42]. Plasmacytoid dendritic cells rec-
ognize HSV through TLR9 to activate interferon produc-
tion [235, 236]. In contrast to TLR2 deficient animals, 
TLR9−/− were more susceptible to HSV infection [237, 
238]. Furthermore, TLR2/TLR9 double knockout animals 
exhibited 100 % mortality and had decreased NK cells as 
well as global cytokine levels. Thus, while TLR9 plays a 
protective role against HSV infection, the role of TLR2 is 
complex and further dissection of its role in different cell 
types is necessary. The importance of TLR signaling is 

further demonstrated by the fact that a HSV-1 protein, 
ICP0, that is expressed early during infection accelerates 
the degradation of MyD88 and inhibits NF-κB activation 
[239]. Interestingly, Iwasaki et al. [240] showed that HSV 
is detected in a serial recognition system by DCs – viral 
glycoproteins are first detected by TLR2 and then viral 
DNA is recognized by intracellular TLR9. The authors 
suggested that this serial recognition system helps to 
mount an optimal antiviral response. Together, this body 
of work indicates that while TLR2 and TLR9 may have 
differential effects on the antiviral response, they also 
work synergistically and the loss of both receptors leads 
to detrimental effects in the host.

Other than the TLR2 and TLR9 interaction, TLR3, 
which recognizes dsRNA, has also been shown to play an 
important role against HSV infection [44]. Vaginal inocu-
lation of TLR3−/− mice led to higher viral loads in the cen-
tral nervous system compared to healthy controls. Of 
note, global cytokine production was unaltered in TLR3−/− 
mice but TLR3−/− astrocytes were unable to produce type 
I IFN after HSV infection, thereby rendering the host sus-
ceptible to extensive CNS infection. Importantly, TLR3 is 
also protective against HSV in humans as children born 
with TLR3 deficiencies were more susceptible to HSV 
encephalitis [10].

�Autoimmune Diseases- SLE

The autoimmune connective tissue diseases (AI- CTDs) are a 
group of clinical disorders that all have circulating autoanti-
bodies (autoAbs) (see Chap. 30). Such disorders include sys-
temic lupus erythematosus (SLE), dermatomyositis, systemic 
sclerosis, rheumatoid arthritis, mixed connective tissue dis-
ease, Sjögren’s disease and more [76]. SLE is a disease com-
monly seen in dermatology, in which patients may exhibit 
several key diagnostic signs and symptoms, including antinu-
clear antibody positivity, malar and discoid rashes, photosen-
sitivity, oral ulcers, arthritis, serositis, and renal, neurologic, 
hematologic, and immunologic disorders. It is generally 
accepted that IFNα and pDCs contribute to the pathogenesis in 
SLE – pDCs recognize self-nucleic acids in a TLR7 and TLR9 
dependent manner, which leads to the upregulation of IFN 
production as well as B cell production of anti-DNA and anti-
RNP antibodies [57, 61]. These autoantibodies maybe directed 
against self antigens such as small nuclear ribonuclear protein 
particles (SnRNP) called U1 and Sm and this interaction leads 
to the formation of immune complexes with DNA or RNA 
from dying cells [241]. Recent evidence suggests that TLR7, 
TLR8 and TLR9 play key roles in mediating an abnormal 
immune response mediated by pDCs and neutrophils to 
endogenous ligands, leading to chronic activation that triggers 
autoimmunity in the skin [57, 242].
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Previous work revealed that specific RNA sequences 
within snRNPs stimulate TLR7 and TLR8 to activate 
immune cells, such as pDCs and monocytes, to secrete 
high levels of IFNα and TNFα respectively [58]. 
Intriguingly, TLR7 and TLR8 are both encoded on the X 
chromosome, which may partially account for why 90 % 
of SLE cases occur in women [243]. A deletion of a sin-
gle copy of TLR7 in mice led to increased survival and 
reduced autoantibody production and splenocyte prolif-
eration [244]. A direct correlation existed between TLR7 
expression and autoAb production, further implicating 
that TLR7 plays a pathogenic role in SLE. Gene duplica-
tion of TLR7  in a specific strain of mice also led to 
increased autoantibody production [59]. Compared to 
TLR7, the role of TLR9  in SLE pathogenesis is more 
complex. TLR9 has been shown to bind single-stranded 
unmethylated CpG-DNA containing a phosphodiester 
backbone, a process that is inhibited by chloroquine and 
quinacrine, suggesting a possible mechanism for the 
therapeutic effect of these drugs seen in some autoim-
mune diseases, such as lupus [245]. Moreover, TLR9/
MyD88 signaling was crucial for generation of patho-
genic autoantibodies in SLE [246]. Based on these stud-
ies, it was expected that TLR9 deficient animals would 
exhibit less severe SLE. Paradoxically, TLR9 deficiency 
promoted SLE in multiple lupus models, suggesting that 
the role of TLR9 was more complex [69, 70]. Most 
recently, it was shown that although TLR9 was indeed 
required for autoAb formation, TLR9 also plays a role in 
B cell-mediated tolerance by controlling the life-span of 
autoreactive B cells [247]. TLR9 also suppressed TLR7-
mediated autoAb production and thus has dual roles in 
SLE pathogenesis [248].

In support of the aforementioned animal data, SLE 
patients also expressed high levels of TLR7 and 9 [249]. 
Interestingly, chronic TLR7 and TLR9 stimulation of 
pDCs led to resistance to glucocorticoid treatment [60]. 
Inhibition of TLR7/TLR9 with a small immunoregula-
tory sequence in animal models improved autoantibody 
production as well as kidney damage and a similar inhibi-
tor has been tested in patients with promise [62]. Other 
drugs targeting TLR signaling are also under develop-
ment for SLE and will hopefully lead to drug regimens 
with more favorable side effect profiles for SLE patients 
in the future [250].

�Melanoma and Mycosis Fungoides

Melanoma is a skin cancer caused by neoplastic transfor-
mation of melanocytes and has been increasing in inci-
dence and mortality over the years [251]. It is thought 
that genetic factors and intermittent high-dose UV  

irradiation during childhood are both important etiologic 
factors in melanoma. Although melanoma only accounts 
for 4 % of all skin cancers, it causes more than 70 % of 
skin cancer related deaths as metastatic disease often car-
ries a poor prognosis [252]. Since melanocytes express 
functional TLR2, 3, 4, 5, 7, 9 and 10, it has not surprising 
that TLR ligands have the ability to modulate melanoma 
pathogenesis [136, 137]. Indeed, LPS has been shown to 
stimulate melanocyte IL-8 production in a TLR4 depen-
dent manner [253]. Agonists of TLR 3, 4, 7, 8 and 9 have 
showed promise as cancer immunotherapy agents and are 
regarded as having high potential by the National Cancer 
Institute [254].

Manipulation of TLRs is currently being investigated as 
a therapeutic option for melanoma as TLR agonists can 
activate dendritic cells in sentinel lymph nodes (SLNs) of 
melanoma patients [255]. In animal studies, addition of 
CpG DNA and poly-I:C (TLR9 and TLR3 ligands respec-
tively) to peritumoral injections have been shown to 
increase cutaneous tumor rejection and animals remained 
tumor free after 50  days [256]. TLR7 agonists such as 
852A and imiquimod have also been shown to have antitu-
mor effects [63, 64, 66, 252]. Topical application of 
imiquimod in melanoma patients enhanced influx of CD4+ 
and CD8+ T cells to the skin as well as SLNs [252]. While 
commonly used as a topical agent, imiquimod has chemi-
cal properties that are not favorable for systemic adminis-
tration [63], which led to the testing of other TLR7 agonists 
such as 852A. 852A was well tolerated in metastatic mela-
noma patients and induced systemic inflammatory 
responses [64]. In animal models, 852A had significant 
antitumor activity and stimulated higher levels of type I 
IFN release [63].

PF-3512676 is an immunomodulating synthetic oligonu-
cleotide that acts as a TLR9 agonist [257]. It is currently 
under development for the treatment of cancer both as mono-
therapy and in combination therapy, as well as an adjuvant 
for vaccines. It acts through TLR9 receptors present on B 
cells and plasmacytoid dendritic cells to stimulate B-cell 
proliferation, IFNα and natural killer (NK) cell activity. Used 
alone as a therapeutic agent, PF-3512676 had a favorable 
safety profile but only elicited moderate response rates in 
patients with advanced melanoma [71]. As an adjuvant to 
other therapeutic modalities, PF-3512676 was shown to be 
safe in melanoma patients using other modes of therapy such 
as CTLA-4 blockade [72, 73].

TLR modulators are also being tested in other skin 
malignancies. Mycosis fungoides (MF) is the most com-
mon form of cutaneous T-cell lymphoma (CTCL) and is 
characterized by malignant clinical proliferation of skin 
trafficking T-cells [258]. Skin lesions in MF include 
patches, plaques, tumors, hypopigmented lesions, and 
erythroderma. Treatment options range from light therapy, 
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retinoids, nitrogen mustard, topical steroids to systemic 
interferon [65]. TLR agonists have shown promise as a 
therapeutic approach  – a preliminary pilot study of six 
patients with patch and plaque stage MF treated with topi-
cal imiquimod, a TLR7 agonist, 5 % cream three times a 
week for 12  weeks reported a histologic and clinical 
response rate of 50 % [65]. A phase I clinical study admin-
istered TLR9 agonist CpG oligodeoxynucleotide (ODN) to 
MF patients and demonstrated antitumor activity [74]. MF 
patients who failed standard treatment in a subsequent 
study using ODN had increased pDC infiltration as well as 
a decrease in regulatory T cells [75]. Skin lesion regression 
was noted in one-third of patients but the overall clinical 
response assessment was limited in this study due to the 
small patient size. Future studies may yield promising ther-
apies for MF patients who do not respond to standard treat-
ment approaches.

�Ultraviolet Radiation

Ultraviolet radiation (UVR) is an established carcinogen that 
causes genetic lesions in keratinocytes and contributes to 
skin cancer development (see Chap. 10) [259]. UVR causes 
the formation of cyclobutane pyrimidine dimers (CPDs) and 
DNA single-strand breaks [260], which activates DNA repair 
enzymes that are vital for maintaining genome integrity. 
Irreversibly damaged keratinocytes that cannot be repaired 
undergo cell death and are sloughed off to maintain an intact 
skin barrier. Additionally, it has long been known that UVR 
causes widespread immune suppression by depleting 
Langerhans cells (LCs), inhibiting APC antigen presentation 
and upregulating immunoregulatory cytokines such as IL-10 
[259]. UVR stimulates the upregulation of HSPs from kera-
tinocytes that are known to stimulate TLRs (see section 
“Psoriasis”) and lead to the release of IL-10 and TNFα [76]. 
Moreover, C3H/HeJ mice that are TLR4-hyporesponsive 
exhibit impaired TNF-α production after UVB exposure and 
are resistant to UVB suppression of CHS [52]. More recent 
studies have demonstrated that UVR can damage self non-
coding RNA that contain stem-loop structures and activate 
TLR3 as DAMPs [261]. Additionally, TLR signaling may 
determine the form of cell death that takes place after UVR 
damage as deficiencies in TLR4-MyD88 axis led to increased 
cell survival along with upregulation of markers of necropto-
sis [53]. Therefore, multiple TLRs are activated after UVR 
exposure and have multiple downstream effects that may 
affect the development of malignant lesions.

The power of UV light and the importance of DNA 
repair machinery is demonstrated in xeroderma pigmento-
sum (XP), a rare, autosomal recessive disorder characterized 

by photosensitivity, premature skin aging, and malignant 
tumor development due to an inability to repair DNA dam-
age induced by UV light [76]. Gaspari et al. [262] discov-
ered that NK cells from XP patients had a defect in IFN 
production in response to poly-I:C (a TLR3 ligand) stimu-
lation. Subsequent studies have further expanded on the 
role of TLRs in XP and the DNA repair machinery. TLR4 
deficient animals expressed higher degrees of nucleotide 
excision repair after UV damage due to activation of XP 
complementation group A (XPA) expression [54]. The 
ligand involved in TLR4 stimulation was not studied but it 
will be interesting to determine whether PAMPs or DAMPs 
are involved in TLR4 activation after UVL damage. In con-
trast to the inhibitory role of TLR4, TLR7 agonist imiqui-
mod was shown to enhance DNA repair gene expression 
and decreased DNA damage detected in local lymph nodes 
when applied topically [66]. Other repair functions in 
response to UV damage has been shown to be dependent on 
TLRs as well as TLR3 was shown to be required for effec-
tive skin barrier repair after UVR exposure [263]. 
Collectively, evidence suggests that TLRs play an impor-
tant role in sensing and modulating the downstream 
response to UVR damage. Whether these TLR modulating 
properties by UVR can be harnessed to protect against 
DNA damage and prevent tumor development in XP 
patients remain to be investigated.

�Conclusion

Since the discovery of TLRs more than 20 years ago, the 
family of PRRs continues to grow and be implicated in 
human disease. Evidence continues to accumulate to sug-
gest that TLRs, the most well characterized group of 
PRRs, play an essential role in bridging innate and adap-
tive immune responses. Up to 13 mammalian TLRs have 
been identified and it is believed that TLRs 1–10 are func-
tional in humans and that TLRs not only respond to 
PAMPs but also endogenous ligands produced after tissue 
damage coined DAMPs. Both PAMPs and DAMPs can 
contribute to the activation of TLRs, which has down-
stream effects on both innate and adaptive immunity 
(Fig. 2.2). Dysregulation in TLR activation can lead to the 
development of dermatological diseases such as psoriasis 
and allergic contact dermatitis. Thus, TLRs play an inte-
gral role in countless dermatologic diseases but many 
questions remain and future studies are necessary to 
address precise molecular mechanisms that are involved. 
It is certain that many more discoveries will be made to 
further characterize and understand this group of recep-
tors, their role in skin diseases, as well as the potential to 
manipulate signaling through these TLRs to use them for 
diagnostic and treatment purposes.

J. Shiu and A.A. Gaspari

http://dx.doi.org/10.1007/978-3-319-29785-9_10


27

�Questions

	1.	 Which of the following represent a negative regulator 
(inhibitor) of TLR function?
	A.	 IRAK-M
	B.	 TOLLIP
	C.	 SOCS-1
	D.	 All of the above
	E.	 None of the above

Correct answer: D-All of the above. IRAK-M, TOLLIP and 
SOCS-1 are all TLR negative regulators

	2.	 Which skin disease have TLR negative regulators been 
associated?
	A.	 Non-melanoma skin cancer
	B.	 Psoriasis
	C.	 Atopic Dermatitis
	D.	 Cutaneous T-cell lymphoma

Correct answer: (C)-TOLLIP mutations have been associ-
ated with Atopic dermatitis. However, the exact role of 
these mutations in the pathophysiology of this common 
skin disease remains unclear

	3.	 How do TLRs mediate pro-inflammatory cytokine pro-
duction in acne vulgaris?
	A.	 PAMPs from P. acnes activate TLR2 and TLR4, incit-

ing the production of pro-inflammatory cytokines
	B.	 PAMPs from S. aureus induce TLR2 activation
	C.	 TLRs are not involved in the pathophysiology of acne
	D.	 PAMPs from the pilosebacious unit activate TLR7,8,9

Correct answer: (A)-P. acnes microbial products such as 
LPS and peptidoglycan activate TLR2 and TLR4 to active 
the production of proinflammatory cytokines in the skin. 
It is thought that P. acnes strains in healthy controls may 
regulate TLR expression differently when compared to P. 
acnes strains in acne vulgaris patients

	4.	 In allergic contact dermatitis (ACD), what is the predomi-
nant TLR involved in the pathophysiology of nickel 
allergy?
	A.	 TLR4
	B.	 TLR7
	C.	 TLR2
	D.	 TLR9
	E.	 None of the above

Correct answer: (A) Nickel, cobalt and palladium can bind 
and activate human TLR4s and activation of CHS. depen-
dent on histidine residues that are specifically found in 
human TLR4, thus explaining why mice are naturally 
resistant to nickel-induced CHS

	5.	 Why are mice genetically resistant to ACD to Nickel?
	A.	 Nickel does not penetrate mouse skin
	B.	 Their TLR are not activated by nickel
	C.	 Their Tregulatory cells suppress the response
	D.	 Mice have a high level of nickel in their diet

Correct answer: (B)-TLR4  in mice lacks the amino acid 
histidine in the extracellular domain. In humans, TLR4 
normally expresses the amino acid histidine. TLR4 
activation by nickel is dependent on histidine residues 
that are specifically found in human TLR4, thus 
explaining why mice are naturally resistant to nickel-
induced CHS

	6.	 How are TLRs involved in DNA repair?
	A.	 TLR sense DNA damage
	B.	 TLR activation directly induces a DNA repair response
	C.	 TLR activation triggers inflammation, which may 

stimulate DNA repair
	D.	 TLR7 agonists applied can increase DNA repair in the 

skin
	E.	 All of the above
	F.	 None of the above

Correct answer: (D)-TLR engagement may stimulate DNA 
repair by multiple mechanisms. This phenomenon is rel-
evant to UV light exposure, and recovery of skin derived 
antigen presenting cells

	7.	 Which of the following diseases is associated with 
impaired TLR signaling via TLR3?
	A.	 Discoid lupus
	B.	 Alopecia areata
	C.	 Psoriasis
	D.	 Xeroderma pigmentosa

Correct answer: (D)-XP patients NK cells are defective in 
IFN production in response to TLR3 stimulation
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