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Preface

The Editors are delighted to welcome you to the 69th anniversary 
14th edition of Williams Textbook of Endocrinology. In this new edi-
tion, we have strived to maintain Robert Williams’ original 1950 
mandate to publish “a condensed and authoritative discussion 
of the management of clinical endocrinopathies based upon the 
application of fundamental information obtained from chemical 
and physiological investigation.” With the passing of the decades, 
our scholarly goal has been enriched by the addition of genetic, 
molecular, cellular, and population sciences, together forming 
the basis of multiple new insights into both the pathogenesis and 
management of endocrine disorders. Editors of this textbook aim 
to provide a cogent navigation through the wealth of information 
emanating from novel medical discoveries that advance the field 
and bring new therapeutic approaches to patients with endocrine 
diseases. Our challenge remains to be both concise and didactic, 
while comprehensively covering relevant translational and clinical 
endocrine science in an accessible fashion.

With these goals in mind, we have once again assembled a 
team of outstanding authorities who each contribute their unique 
expertise to synthesize current knowledge in their respective topic 
area. For this edition, we have added new chapters on the global 

burden of endocrine disease and the navigation of the prolific 
expert endocrine guidelines, as well as chapters devoted to trans-
gender endocrinology, and osteomalacia. The section on diabetes 
mellitus has been expanded with dedicated chapters on the physi-
ology of insulin secretion, as well as a comprehensive update on 
therapeutics of type 2 diabetes mellitus. These new contributions 
reflect the changing emphasis of endocrine practice today and the 
availability of a wealth of new knowledge and therapeutic options 
that together affect clinical care. Each section has undergone sig-
nificant revision and updating to bring the most current informa-
tion to our readers.

We are deeply appreciative of the valued co-workers in our 
respective offices, including Shira Berman, and Grace Labrado for 
their dedicated efforts. We also thank our colleagues at Elsevier—
Rae Robertson and Nancy Duffy—for shepherding the produc-
tion process so professionally. The final product of this exemplary 
text is due to their skilled navigation of the medical publishing 
world. We are confident that our combined efforts have succeeded 
in achieving the high standards set by previous editions that have 
made Williams the classic “go to” book for all those interested in 
endocrinology.
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CHAPTER OUTLINE 

The Evolutionary Perspective, 3 

Endocrine Glands, 4 

Transport of Hormones in Blood, 5 

Target Cells as Active Participants, 6 

Control of Hormone Secretion, 7 

KEY POINTS 

Endocrinology is a scientific and medical discipline with a 
unique focus on hormones that features a multidisciplinary 
approach to understanding normal and pathologic hormone 
production and action, as well as diseases related to abnormal 
hormone signaling. 
Endocrine and paracrine systems differ in important respects 
that illustrate the evolutionary pressures on these distinct cell
signaling strategies. 
Differentiated hormone-secreting cells are designed to ef
ficiently synthesize hormones and secrete them in a regulated 
way. 
Hormones in the bloodstream often are associated with binding 
proteins to enhance their solubility, protect them from degra
dation and renal excretion, and regulate their stability in the 
extracellular space. 

bout a hundred years ago, Starling coined the term hor
mone to describe secretin, a substance secreted by the 
small intestine into the bloodstream to stimulate pancre-

atic secretion. In his Croonian Lectures, Starling considered the 
endocrine and nervous systems as two distinct mechanisms for 
coordination and control of organ function. Thus, endocrinology 
found its first home in the discipline of mammalian physiology. 

Over the next several decades, biochemists, physiologists, and 
clinical investigators characterized peptide and steroid hormones 
secreted into the bloodstream from discrete endocrine glands 

2 

Hormone Measurement, 10 

Endocrine Diseases, 10 

Diagnostic and Therapeutic Uses of Hormones, 11 

Future Perspectives, 12 

Hormones either act on receptors on the plasma membranes of 
target cells or move into cells to bind to intracellular receptors; 
in either case, the target cell is not a passive recipient of signals 
but rather has key roles in regulating hormonal responses. 
Control of hormone secretion involves integrated inputs from mul
tiple distant targets, nervous system inputs, and local paracrine and 
autocrine factors, all leading to complex patterns of circadian secre
tion, pulsatile secretion, secretion driven by homeostatic stimuli, or 
stimuli that lead to secular changes over the lifespan. 
Endocrine diseases fall into broad categories of hormone 
overproduction or underproduction, altered tissue response to 
hormones, or tumors arising from endocrine tissue. 
Hormones and synthetic molecules designed to interact with 
hormone receptors are administered to diagnose and treat 
diseases. 

or other organs. Diseases such as hypothyroidism and diabetes 
could be treated successfully for the first time by replacing specific 
hormones. These initial triumphs of discovery formed the foun
dation of the clinical specialty of endocrinology. 

Advances in cell biology, molecular biology, and genetics over 
the ensuing years began to reveal mechanisms underlying endo
crine disease pathogenesis, hormone secretion, and action. Even 
though these advances have embedded endocrinology in the 
framework of molecular cell biology, they have not changed the 
essential subject of endocrinology-the signaling that coordinates 
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and controls functions of multiple organs and processes. Herein 
we survey general themes and principles that underpin diverse 
approaches used by clinicians, physiologists, biochemists, cell 
biologists, and geneticists to understand the endocrine system.

The Evolutionary Perspective
Hormones are broadly defined as chemical signals secreted into 
the bloodstream that act on distant tissues, usually in a regulatory 
fashion. Hormonal signaling represents a special case of the more 
general process of signaling between cells. Even unicellular organ-
isms such as baker’s yeast, Saccharomyces cerevisiae, secrete short 
peptide mating factors that act on receptors of other yeast cells 
to trigger mating between the two cells. These receptors resemble 
the ubiquitous family of seven membrane-spanning mammalian 
receptors that respond to diverse ligands such as photons and gly-
coprotein hormones. Because these yeast receptors trigger activa-
tion of heterotrimeric G proteins just as mammalian receptors do, 
this conserved signaling pathway was likely to have been present 
in the common ancestor of yeast and humans.

Signals from one cell to adjacent cells, termed paracrine sig-
nals, often use the same molecular pathways used by hormonal 
signals. For example, the sevenless receptor controls the differen-
tiation of retinal cells in the Drosophila eye by responding to a 
membrane-anchored signal from an adjacent cell. Sevenless is a 
membrane-spanning receptor with an intracellular tyrosine kinase 
domain that closely resembles signaling by hormone receptors 
such as the insulin receptor tyrosine kinase. As paracrine factors 
and hormones can share signaling machinery, it is not surpris-
ing that hormones can, in some settings, act as paracrine factors. 
Testosterone, for example, is secreted into the bloodstream but 
also acts locally in the testes to control spermatogenesis. Insulin-
like growth factor 1 (IGF1) is a polypeptide hormone secreted 
into the bloodstream from the liver and other tissues but is also 
a paracrine factor produced locally in most tissues to control cell 
proliferation. Furthermore, one receptor can mediate actions of a 
hormone, such as parathyroid hormone (PTH), and of a paracrine 
factor, such as parathyroid hormone–related protein. In some 
cases, the paracrine actions of “hormones” exhibit functions quite 
unrelated to the hormonal functions. For example, macrophages 
synthesize the active form of vitamin D, 1,25-dihydroxyvitamin 
D3 (1,25[OH]2D3), which can then bind to vitamin D receptors 
in the same cells and stimulate production of antimicrobial pep-
tides.1 This example illustrates that the vitamin D 1α-hydroxylase 
(P450 27B1) responsible for activating 25-hydroxyvitamin D is 
synthesized in tissues in which its function is unrelated to the cal-
cium homeostatic actions of the 1,25(OH)2D3 hormone.

Target cells respond similarly to signals that reach them from 
the bloodstream (hormones) or from adjacent cells (paracrine 
factors); the cellular response machinery does not distinguish 
between sites of origin of hormone signals. The shared final com-
mon pathways used by hormonal and paracrine signals should 
not, however, obscure important differences between hormonal 
and paracrine signaling systems (Fig. 1.1). Hormone synthesis 
occurs in specialized cells designed specifically for their produc-
tion, and the hormone then travels in the bloodstream and dif-
fuses in effective concentrations into tissues. Therefore, hormones 
must be produced in much larger amounts to act as hormones 
relative to the amounts needed to act as paracrine factors, which 
act at specific local locations. Hormones must be able to travel 
to and be protected from degradation in transit from the site of 

production to the distant site of action. Therefore, for example, 
lipophilic hormones bind to soluble proteins that allow them to 
travel in the aqueous media of blood at relatively high concentra-
tions. The ability of hormones to diffuse through the extracellu-
lar space implies local hormone concentrations at target sites will 
rapidly decrease when glandular secretion of the hormone ceases. 
As hormones quickly diffuse throughout extracellular fluid, hor-
monal metabolism can occur in specialized organs, including liver 
and kidney, in a manner that determines the effective hormone 
concentration in other tissues.

Paracrine factors have rather different constraints. Paracrine 
signals do not travel very far; consequently, the specific site of ori-
gin of a paracrine factor determines where it will act and provides 
specificity to that action. When the paracrine factor bone mor-
phogenetic protein 4 (BMP4) is secreted by cells in the developing 
kidney, BMP4 regulates differentiation of renal cells; when the 
same factor is secreted by cells in bone, it regulates bone forma-
tion. Thus the site of origin of BMP4 determines its physiologic 
role. In contrast, because hormones are secreted into the blood-
stream, their sites of origin are often divorced from their func-
tions. Like BMP4, thyroid hormone, for example, acts in many 
tissues but the site of origin of thyroid hormone in a gland in 
the neck is not functionally relevant to the sites of action of the 
hormone.

Because specificity of paracrine factor action is so dependent 
on its precise site of origin, elaborate mechanisms have evolved to 
regulate and constrain the diffusion of paracrine factors. Paracrine 
factors of the hedgehog family, for example, are covalently bound 
to cholesterol to constrain diffusion of these molecules in the 
extracellular milieu. Most paracrine factors interact with binding 
proteins that block their action and control their diffusion. For 
example, chordin, noggin, and many other distinct proteins bind 
to various members of the BMP family to regulate their action. 
Proteases such as tolloid then destroy the binding proteins at spe-
cific sites to liberate BMPs so that they can act on appropriate 
target cells.

Thus, hormones and paracrine factors have several distinct 
strategies regulating biosynthesis, sites of action, transport, and 
metabolism. These differing strategies may partly explain why a 
hormone such as IGF1, unlike its close relative insulin, has multi-
ple binding proteins to control its action in tissues. IGF1 exhibits 
a double life as both a hormone and a paracrine factor. Presumably 
the IGF1 actions mandate an elaborate binding protein apparatus 
to enable appropriate hormone signaling.

All the major hormonal signaling programs—G protein–cou-
pled receptors, tyrosine kinase receptors, serine/threonine kinase 
receptors, ion channels, cytokine receptors, nuclear receptors—are 
also used by paracrine factors. In contrast, several paracrine signal-
ing programs are used only by paracrine factors and not by hor-
mones. For example, Notch receptors respond to membrane-based 
ligands to control cell fate, but no known blood-borne ligands use 
Notch-type signaling. Perhaps the complex intracellular strategy 
used by Notch, which involves cleavage of the receptor and subse-
quent nuclear actions of the receptor’s cytoplasmic portion, is too 
inflexible to serve the purposes of hormones.

Analyses of the complete genomes of multiple bacterial species, 
the yeast Saccharomyces cerevisiae, the fruit fly Drosophila mela-
nogaster, the worm Caenorhabditis elegans, the plant Arabidopsis 
thaliana, humans, and many other species have allowed a compre-
hensive view of the signaling machinery used by various forms of 
life. S. cerevisiae uses G protein–coupled receptors; this organism, 
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however, lacks tyrosine kinases, used in the insulin signaling path-
way, and nuclear receptors that resemble the estrogen/thyroid 
receptor family. In contrast, the worm and fly share with humans 
the use of each of these signaling pathways, although with sub-
stantial variation in numbers of genes committed to each pathway. 
For example, the Drosophila genome encodes 21 nuclear recep-
tors, the C. elegans genome encodes about 284, and the human 
genome encodes 48 such receptors. These patterns suggest ancient 
multicellular animals must already have established the signaling 
systems that are the foundation of the endocrine system as we 
know it in mammals.

Our understanding of endocrine systems and novel physio-
logic biology continues to expand. Even before the sequencing of 
the human genome, sequence analyses had made clear that many 
receptor genes are found in mammalian genomes for which no 
clear ligand or function was known. Analyses of these “orphan” 
receptors broadened current understanding of hormonal sig-
naling. For example, the liver X receptor (LXR) was one such 
orphan receptor found when searching for unknown putative 
nuclear receptors. Subsequent experiments found oxygenated 
derivatives of cholesterol are the ligands for LXR, which regu-
lates genes involved in cholesterol and fatty acid metabolism.2 
The examples of LXR and many others raise the question of what 
constitutes a hormone. The classic view of hormones is that they 
are synthesized in discrete glands and have no function other 

than activating receptors on cell membranes or in the nucleus. 
Cholesterol, which is converted in cells to oxygenated deriva-
tives that activate the LXR receptor, in contrast, uses a hormonal 
strategy to regulate its own metabolism. Other orphan nuclear 
receptors similarly respond to ligands such as bile acids and fatty 
acids. These “hormones” have important metabolic roles quite 
separate from their signaling properties, although hormone-
like signaling permits regulation of the metabolic function. The 
calcium-sensing receptor is an example from the G protein–coupled 
receptor family that responds to a nonclassic ligand, ionic cal-
cium. Calcium is released into the bloodstream from bone, kid-
ney, and intestine and acts on the calcium-sensing receptor on 
parathyroid cells, renal tubular cells, and other cells to coordinate 
cellular responses to calcium. Thus, many important metabolic 
factors have hormonal properties as part of a regulatory strategy 
within complex organisms. Broadened understanding of these 
new metabolic factors is leading to new therapeutic approaches 
to treat or prevent human diseases. 

Endocrine Glands
Hormone formation may occur either in the endocrine glands, 
which are localized collections of specific cells, or in cells that have 
additional roles. Many protein hormones, such as growth hor-
mone (GH), PTH, prolactin (PRL), insulin, and glucagon, are 
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protein; IGF, insulin-like growth factor.
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produced in dedicated cells by standard protein synthetic mecha-
nisms common to all cells. These secretory cells contain specialized 
secretory granules designed to store large amounts of hormone 
and to release the hormones in response to specific signals. Hor-
mones made in these glands and specialized cells are considered to 
be classic endocrine systems. Formation of small hormone mole-
cules initiates with commonly found precursors, usually in specific 
glands such as the adrenals, gonads, or thyroid. In the case of the 
steroid hormones, the precursor is cholesterol, which is modified 
by various cytochrome P450–based hydroxylations and carbon-
carbon bond cleavages and by specific oxidoreductases to form 
the glucocorticoids, androgens, estrogens, and their biologically 
active derivatives.

However, not all hormones are formed in dedicated and spe-
cialized endocrine glands; the adipose, enteroendocrine, and 
other systems are now also recognized to be complex endocrine 
systems. Thus with the discovery of novel peptides and amino 
acid or  steroid-based molecules and their regulatory functions, the 
field of endocrinology and metabolism has recently been greatly 
expanded. For example, the protein hormone leptin, which regu-
lates appetite and energy expenditure, is formed in adipocytes, 
providing a specific signal reflecting the nutritional state of the 
organism to the central nervous system. The enteroendocrine 
system comprises a unique hormonal system in which peptide 
hormones that regulate metabolic and other responses to oral 
nutrients are produced and secreted by specialized endocrine cells 
scattered throughout the intestinal epithelium. The cholesterol 
derivative, 7- dehydrocholesterol, the precursor of vitamin D3, 
is converted in skin keratinocytes to previtamin D3 by a photo-
chemical reaction.

Thyroid hormone synthesis occurs via a unique pathway. The 
thyroid cell synthesizes a 660,000-kDa homodimer, thyroglobu-
lin, which is then iodinated at specific tyrosines. Some iodotyro-
sines combine enzymatically to form the iodothyronine molecule 
within thyroglobulin, which is then stored in the lumen of the 
thyroid follicle. For tyrosine iodination to occur, the thyroid 
cell must concentrate trace quantities of iodide from the blood 
and oxidize it via a specific peroxidase. Release of thyroxine (T4) 
from thyroglobulin requires phagocytosis and cathepsin-catalyzed 
digestion by the same cells.

Hormones are synthesized in response to biochemical signals 
generated by various modulating systems. Many of these systems 
are specific to the effects of the hormone product; for example, 
PTH synthesis is regulated by the concentration of ionized cal-
cium, and insulin synthesis is regulated by the concentration of 
glucose. For others, such as gonadal, adrenal, and thyroid hor-
mones, control of hormone synthesis is achieved by the homeo-
static function of the hypothalamic-pituitary axis. Cells in the 
hypothalamus and pituitary monitor circulating hormone con-
centrations and secrete trophic hormones, which activate specific 
pathways for hormone synthesis and release. Typical examples are 
GH, luteinizing hormone (LH), follicle-stimulating hormone 
(FSH), thyroid-stimulating hormone (TSH), and adrenocortico-
tropic hormone (ACTH).

These trophic hormones increase rates of hormone synthe-
sis and secretion, and they may induce target cell division, thus 
causing enlargement of the various target glands. For example, 
in hypothyroid individuals living in iodine-deficient areas of the 
world, TSH secretion causes a marked hyperplasia of thyroid 
cells. In such regions, the thyroid gland may be 20 to 50 times its 
normal size. Adrenal hyperplasia occurs in patients with genetic 
deficiencies in cortisol formation. Hypertrophy and hyperplasia 

of parathyroid cells, initiated by an intrinsic response to the stress 
of hypocalcemia, occur in patients with renal insufficiency or cal-
cium malabsorption.

Hormones may be fully active when released into the blood-
stream (e.g., GH or insulin), or they may require activation in 
specific cells to produce biologic effects. These activation steps are 
often highly regulated. For example, T4 released from the thyroid 
cell is a prohormone that must undergo specific deiodination to 
form the active 3,5,3'-triiodothyronine (T3). This deiodination 
reaction can occur in target tissues, such as in the central nervous 
system; in thyrotrophs, where T3 provides feedback regulation of 
TSH production; or in hepatic and renal cells, from which it is 
released into the circulation for uptake by all tissues. A similar 
postsecretory activation step catalyzed by a 5α-reductase causes 
tissue-specific activation of testosterone to dihydrotestosterone 
in target tissues, including the male urogenital tract, prostate, 
genital skin, and liver. Vitamin D undergoes hydroxylation at 
the 25 position in the liver and in the 1 position in the kidney. 
Both hydroxylations must occur to produce the active hormone, 
1,25-dihydroxyvitamin D. Activity of 1α-hydroxylase, but not 
25-hydroxylase, is stimulated by PTH and hypophosphatemia but 
is inhibited by calcium, 1,25-dihydroxyvitamin D, and fibroblast 
growth factor 23 (FGF23).

Most hormones are synthesized as required on a daily, hourly, 
or minute-to-minute basis with minimal storage, but there are 
significant exceptions. One is the thyroid gland, which contains 
enough stored hormone to last for about 2 months. This storage 
permits a constant supply of thyroid hormone despite significant 
variations in the availability of iodine. However, if iodine defi-
ciency is prolonged, normal T4 reservoirs can be depleted.

Feedback signaling systems exemplified earlier enable the hor-
monal homeostasis characteristic of virtually all endocrine systems.  
Regulation may include the central nervous system or local sig-
nal recogniton mechanisms in the glandular cells, such as the  
calcium-sensing receptor of the parathyroid cell. Disruption of 
hormonal homeostasis due to glandular or central regulatory sys-
tem dysfunction has both clinical and laboratory consequences. 
Recognition and correction of disorders of these systems are the 
essence of clinical endocrinology. 

Transport of Hormones in Blood
Protein hormones and some small molecules, such as catechol-
amines, are water soluble and readily transported via the circu-
latory system. Others are nearly insoluble in water (e.g., steroid 
and thyroid hormones), and their distribution presents spe-
cial problems. Such molecules are tightly bound to 50-kDa to 
60-kDa carrier plasma glycoproteins such as thyroxine-binding 
globulin (TBG), sex hormone–binding globulin (SHBG), and 
 corticosteroid-binding globulin (CBG) or weakly bound to abun-
dant albumin. Ligand-protein complexes serve as hormone reser-
voirs, ensure ubiquitous distribution of water-insoluble ligands, 
and protect small molecules from rapid inactivation or excretion 
in urine or bile. Protein-bound hormones exist in equilibria with 
the often-minute quantities of hormone in the aqueous plasma, 
with the “free” fraction of the circulating hormone taken up by the 
target cell. For example, if tracer thyroid hormone is injected into 
the portal vein in a protein-free solution, it binds to hepatocytes at 
the periphery of the hepatic sinusoid. When the same experiment 
is repeated with a protein-containing solution, uniform distribu-
tion of the tracer hormone occurs throughout the hepatic lobule.3 
Despite the very high affinity of some binding proteins for their 
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respective ligands, one specific protein may not be essential for 
hormone distribution. For example, in humans with congenital 
TBG deficiency, other proteins—transthyretin (TTR) and albu-
min—subsume its role. As the affinity of these secondary thyroid 
hormone transport proteins is several orders of magnitude lower 
than that of TBG, it is possible for the hypothalamic-pituitary 
feedback system to maintain free thyroid hormone in the nor-
mal range at a much lower total hormone concentration. The fact 
that the free hormone concentration is normal in individuals with 
TBG deficiency indicates that the hypothalamic-pituitary axis 
defends the free, active hormone.4

Availability of gene-targeting techniques allows specific assess-
ments of the physiologic roles of hormone-binding proteins. For 
example, mice with targeted inactivation of the vitamin D–bind-
ing protein (DBP) have been generated.5 Although the absence 
of DBP markedly reduces circulating concentrations of vitamin 
D, the mice are otherwise normal. However, they have enhanced 
susceptibility to a vitamin D–deficient diet due to the reduced 
reservoir of this sterol. In addition, the absence of DBP markedly 
reduces the half-life of 25-hydroxyvitamin D by accelerating its 
hepatic uptake, making the mice less susceptible to vitamin D 
intoxication.

Protein hormones and some small ligands (e.g., catechol-
amines) produce their effects by interacting with cell surface 
receptors. Others, such as steroid and thyroid hormones, must 
enter the cell to bind to cytosolic or nuclear receptors. In the past, 
it has been thought that much of the transmembrane transport of 
hormones was passive. Evidence now demonstrates specific trans-
porters involved in cellular uptake of thyroid and some steroid 
hormones,7 providing yet another mechanism for regulating the 
distribution of a hormone to its site of action. Studies in mice 
devoid of megalin, a large, cell surface protein in the low-density 
lipoprotein (LDL) receptor family, suggest estrogen and testos-
terone bound to SHBG use megalin to enter peripheral tissues 
while still bound to SHBG.8 In this scenario, the hormone bound 
to SHBG, rather than “free” hormone, is the active moiety that 
enters cells. It is unclear how frequently this apparent exception to 
the “free hormone” hypothesis occurs.

MicroRNAs (miRNAs) have recently also been shown to 
elicit remote metabolic actions. For example, exosomal miRNA 
derived from adipose tissue regulates distant tissue gene expres-
sion, glucose tolerance, and circulating fibroblast growth factor 21 
(FGF21) levels. MiRNAs may thus function as circulating adipo-
kines.9 Other small lipid signaling molecules are being discovered, 
especially for their role in activating or suppressing what were pre-
viously designated as orphan receptors. 

Target Cells as Active Participants
Hormones determine cellular target actions by binding with 
high specificity to receptor proteins. Whether a peripheral cell is 
hormonally responsive depends to a large extent on the presence 
and function of specific and selective hormone receptors and the 
downstream signaling pathway molecules. Thus receptor expres-
sion and intracellular effector pathways activated by the hormone 
signal are key determinants for which cells will respond, and how. 
Receptor proteins may be localized to the cell membrane, cyto-
plasm, or nucleus. Broadly, polypeptide hormone receptors are 
cell membrane associated, but steroid hormones selectively bind 
soluble intracellular proteins (Fig. 1.2).

Membrane-associated receptor proteins usually consist 
of extracellular sequences that recognize and bind ligand, 

transmembrane-anchoring hydrophobic sequences, and intracel-
lular sequences, which initiate intracellular signaling. Intracellu-
lar signaling is mediated by covalent modification and activation 
of intracellular signaling molecules (e.g., signal transducers and 
activators of transcription [STAT] proteins) or by generation of 
small molecule second messengers (e.g., cyclic adenosine mono-
phosphate) through activation of heterotrimeric G proteins. Sub-
units of these G proteins (α-subunits, β-subunits, and γ-subunits) 
activate or suppress effector enzymes and ion channels that gener-
ate the second messengers. Some of these receptors (e.g., those 
for somatostatin) may in fact exhibit low constitutive activity and 
have been shown to signal in the absence of added ligand.

Several growth factors and hormone receptors (e.g., for insulin) 
behave as intrinsic tyrosine kinases or activate intracellular protein 
tyrosine kinases. Ligand activation may cause receptor dimeriza-
tion (e.g., GH) or heterodimerization (e.g., interleukin 6), fol-
lowed by activation of intracellular phosphorylation cascades. 
These activated proteins ultimately determine specific nuclear 
gene expression.

Both the number of receptors expressed per cell and their 
responses are regulated, thus providing a further level of con-
trol for hormone action. Several mechanisms account for altered 
receptor function. Receptor endocytosis causes internalization of 
cell surface receptors; the hormone-receptor complex is subse-
quently dissociated, resulting in abrogation of the hormone signal. 
Receptor trafficking may then result in recycling back to the cell 
surface (e.g., as for the insulin receptor) or the internalized recep-
tor may undergo lysosomal degradation. Both these mechanisms 
triggered by activation of receptors effectively lead to impaired 
hormone signaling downregulation of the receptors. The hor-
mone signaling pathway may also be downregulated by receptor 
desensitization (e.g., as for epinephrine); ligand-mediated receptor 
phosphorylation leads to a reversible deactivation of the recep-
tor. Desensitization mechanisms can be activated by a receptor’s 
ligand (homologous desensitization) or by another signal (heter-
ologous desensitization), thereby attenuating receptor signaling 
in the continued presence of ligand. Receptor function may also 
be limited by action of specific phosphatases (e.g., Src homology 
phosphatase [SHP]) or by intracellular negative regulation of the 
signaling cascade (e.g., suppressor of cytokine signaling [SOCS] 
proteins inhibiting Janus kinase/signal transducers and activators 
of transcription [JAK-STAT] signaling). Certain ligand-receptor 
complexes may also translocate to the nucleus.

Mutational changes in receptor structure can also determine 
hormone action. Constitutive receptor activation may be induced 
by activating mutations (e.g., TSH receptor) leading to endocrine 
organ hyperfunction, even in the absence of ligand. Conversely, 
inactivating receptor mutations may lead to endocrine hypofunc-
tion (e.g., testosterone or vasopressin receptors). These syndromes 
are well characterized (Table 1.1) and are well described in subse-
quent chapters.

The functional diversity of receptor signaling results in overlap-
ping or redundant intracellular pathways. For example, GH, PRL, 
and cytokines each activate JAK-STAT signaling, whereas the dis-
tal effects of these stimuli clearly differ. Thus, despite common 
upstream signaling pathways, hormones can elicit highly specific 
cellular effects. Tissue-type or cell-type genetic programs or recep-
tor-receptor interactions at the cell surface (e.g., hetero-oligomer-
ization of dopamine D2 with somatostatin receptor, or insulin 
with IGF1 receptor) may also confer a specific cellular response to 
a hormone and provide an additive cellular effect.10 In addition, 
effector protein expression may differ in select cells to modulate 



7Chapter 1 Principles of Endocrinology

hormonal response. For example, the glucose  transporter-4 pro-
tein, which leads to insulin-mediated glucose uptake, is most 
abundantly expressed in muscle, hepatic and  adipose tissues, 
causing these tissues to be the most sensitive  tissues for insulin- 
mediated glucose disposal.

A final mechanism of nuclear receptor modulation is prerecep-
tor regulation via intracellular enzymes that convert the circulat-
ing molecules to more or less potent hormones. In addition to 
the activation of T4 and testosterone described earlier, selective 
hormone inactivation occurs in some cells. In the distal nephron, 
the enzyme 11β-hydroxysteroid dehydrogenase type 2 converts 
the mineralocorticoid-receptor ligand cortisol to inactive corti-
sone, thus preventing receptor activation. This mechanism allows 
aldosterone, which is not a substrate for the enzyme, to regulate 
mineralocorticoid activity in the kidney despite circulating aldo-
sterone concentrations 1000 times lower than those of cortisol. 

Control of Hormone Secretion
Anatomically distinct endocrine glands are composed of highly 
differentiated cells that synthesize, store, and secrete hormones. 
Circulating hormone concentrations are a function of glandular 
secretory patterns and hormone clearance rates. Hormone secre-
tion is tightly regulated to attain circulating levels that are most 
conducive to elicit the appropriate target tissue response. For 
example, longitudinal bone growth is initiated and maintained 
by exquisitely regulated levels of circulating GH, yet mild GH 
hypersecretion results in gigantism, and GH deficiency causes 
growth retardation. Ambient circulating hormone concentrations 
are not uniform, and secretion patterns determine appropriate  
physiologic function. Thus, insulin secretion occurs in short pulses  
elicited by nutrient and other signals; gonadotropin secretion is 
episodic, determined by a hypothalamic pulse generator; and PRL 

ss

s
s

s

s

Biological responses

Proteins

mRNAs

Target gene

Progesterone

IGF1

cAMP

ATP AAAAA

PKA

A
C

G
R

LH

R

R

R

P

O

O

O R O

O

XTyr

XTyr

PP TFTyrTF

• Fig. 1.2 Hormonal signaling by cell surface and intracellular receptors. The receptors for the water-soluble 
polypeptide hormones, luteinizing hormone (LH), and insulin-like growth factor 1 (IGF1) are integral mem-
brane proteins located at the cell surface. They bind the hormone-utilizing extracellular sequences and 
transduce a signal by the generation of second messengers: cyclic adenosine monophosphate (cAMP) 
for the LH receptor and tyrosine-phosphorylated substrates for the IGF1 receptor. Although effects on 
gene expression are indicated, direct effects on cellular proteins (e.g., ion channels) are also observed. In 
contrast, the receptor for the lipophilic steroid hormone progesterone resides in the cell nucleus. It binds 
the hormone and becomes activated and capable of directly modulating target gene transcription. AC, 
adenylyl cyclase; ATP, adenosine triphosphate; G, heterotrimeric G protein; mRNAs, messenger RNAs; 
PKA, protein kinase A; R, receptor molecule; TF, transcription factor; Tyr, tyrosine found in protein X; X, 
unknown protein substrate. (From Mayo K. Receptors: molecular mediators of hormone action. In: Conn 
PM, Melmed S, eds. Endocrinology: Basic and Clinical Principles. Totowa, NJ: Humana Press; 1997:11.)
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secretion appears to be relatively continuous, with secretory peaks 
elicited during suckling.

Hormone secretion also adheres to rhythmic patterns. Circa-
dian rhythms serve as adaptive responses to environmental signals 
and are controlled by a circadian timing mechanism.11 Light is the 
major environmental cue adjusting the endogenous clock. The ret-
inohypothalamic tract entrains circadian pulse generators situated 
within hypothalamic suprachiasmatic nuclei. These signals sub-
serve timing mechanisms for the sleep-wake cycle and determine 
patterns of hormone secretion and action. Disturbed circadian 
timing results in hormonal dysfunction and may also be reflective 
of entrainment or pulse generator lesions. For example, adult GH 
deficiency due to a damaged hypothalamus or pituitary is associ-
ated with elevations in integrated 24-hour leptin concentrations 
and decreased leptin pulsatility, yet preserved circadian rhythm of 
leptin. GH replacement restores leptin pulsatility, promoting loss 
of body fat mass.12 Sleep is an important cue regulating hormone 
pulsatility. About 70% of overall GH secretion occurs during 
slow-wave sleep, and increasing age is associated with declining 
slow-wave sleep and concomitant decline in GH and elevation 
of cortisol secretion.13 Most pituitary hormones are secreted in a 
circadian (day-night) rhythm, best exemplified by ACTH peaks 
before 9 am, whereas ovarian steroids follow a 28-day menstrual 
rhythm. Disrupted episodic rhythms are often a hallmark of endo-
crine dysfunction. For example, loss of circadian ACTH secretion 
with high midnight cortisol levels is a feature of Cushing disease.

Hormone secretion is induced by multiple specific bio-
chemical and neural signals. Integration of these stimuli results 
in the net temporal and quantitative secretion of the hormone 
(Fig. 1.3). Signals elicited by hypothalamic hormones (growth  

hormone–releasing hormone [GHRH], somatostatin), periph-
eral hormones (IGF1, sex steroids, thyroid hormone), nutri-
ents, adrenergic pathways, stress, and other neuropeptides all  
converge on the somatotroph cell, resulting in the ultimate pat-
tern and quantity of GH secretion. Networks of reciprocal inter-
actions allow for dynamic adaptation and shifts in environmental 
signals. These regulatory systems involve the hypothalamic, pitu-
itary, and target endocrine glands, as well as the adipocytes and 
lymphocytes. Peripheral inflammation and stress elicit cytokine 
signals that interface with the neuroendocrine system, resulting 
in hypothalamic-pituitary axis activation. Parathyroid and pan-
creatic secreting cells are less tightly controlled by the hypothala-
mus, but their functions are tightly regulated by the distal effects 
they elicit. For example, PTH secretion is induced when serum 
calcium levels fall and the signal for sustained PTH secretion is 
abrogated by rising calcium levels, whereas insulin secretion is 
induced when blood glucose rises but suppressed when glucose 
concentrations fall.

Several tiers of control subserve the ultimate net glandular secre-
tion. First, central nervous system signals, including afferent stim-
uli, neuropeptides, and stress, signal the synthesis and secretion of 
hypothalamic hormones and neuropeptides (Fig. 1.4). Four hypo-
thalamic-releasing hormones (GHRH,  corticotropin-releasing 
hormone [CRH], thyrotropin-releasing hormone [TRH], and 
gonadotropin-releasing hormone [GnRH]) traverse the hypotha-
lamic portal vessels and impinge upon their respective transmem-
brane trophic hormone-secreting cell receptors. These distinct  
cells express GH, ACTH, TSH, and gonadotropins, respectively. 
In contrast, hypothalamic somatostatin and dopamine suppress 
GH or PRL and TSH secretion, respectively. Trophic hormones 

  Diseases Caused by Mutations in G Protein–Coupled Receptors.

Conditiona Receptor Inheritance ΔFunctionb

Retinitis pigmentosa Rhodopsin AD/AR Loss

Nephrogenic diabetes insipidus Vasopressin V2 X-linked Loss

Familial glucocorticoid deficiency ACTH AR Loss

Color blindness Red/green opsins X-linked Loss

Familial precocious puberty LH AD (male) Gain

Familial hypercalcemia Ca2+ sensing AD Loss

Neonatal severe parathyroidism Ca2+ sensing AR Loss

Dominant form hypocalcemia Ca2+ sensing AD Gain

Congenital hyperthyroidism TSH AD Gain

Hyperfunctioning thyroid adenoma TSH Somatic Gain

Metaphyseal chondrodysplasia PTH-PTHrP Somatic Gain

Hirschsprung disease Endothelin-B Multigenic Loss

Coat color alteration (E locus, mice) MSH AD/AR Loss and gain

Dwarfism (little locus, mice) GHRH AR Loss

aAll are human conditions with the exception of the final two entries, which refer to the mouse.
bLoss of function refers to inactivating mutations of the receptor, and gain of function to activating mutations.

ACTH, Adrenocorticotropic hormone; AD, autosomal dominant inheritance; AR, autosomal recessive inheritance; FSH, follicle-stimulating hormone; GHRH, growth hormone–releasing hormone; LH, lutein-
izing hormone; MSH, melanocyte-stimulating hormone; PTH-PTHrP, parathyroid hormone and parathyroid hormone–related peptide; TSH, thyroid-stimulating hormone.

From Mayo K. Receptors: molecular mediators of hormone action. In: Conn PM, Melmed S, eds. Endocrinology: Basic and Clinical Principles. Totowa, NJ: Humana Press; 1997:27.  

TABLE 1.1



9Chapter 1 Principles of Endocrinology

maintain the structural and functional integrity of endocrine 
organs, including the thyroid and adrenal glands and the gonads. 
Target hormones, in turn, serve as powerful negative feedback 
regulators of their respective trophic hormone, often also sup-
pressing secretion of hypothalamic-releasing hormones. In certain 
circumstances (e.g., during puberty), peripheral sex steroids may 
positively induce the hypothalamic-pituitary-target gland axis. For 
example, LH induces ovarian estrogen secretion, which feeds back 
positively to induce further LH release. Pituitary hormones them-
selves, in a short feedback loop, also regulate their own respec-
tive hypothalamic-controlling hormone. Hypothalamic-releasing 
hormones are secreted in nanogram amounts and have short half-
lives of a few minutes. Anterior pituitary hormones are produced 
in microgram amounts and have longer half-lives, but peripheral 

hormones can be produced in up to milligram amounts daily, with 
much longer half-lives.

A further level of secretion control occurs within the gland 
itself. Intraglandular paracrine or autocrine growth peptides serve 
to autoregulate pituitary hormone secretion, as exemplified by 
epidermal growth factor (EGF) control of PRL or IGF1 con-
trol of GH secretion. Molecules within the endocrine cell may 
also subserve an intracellular feedback loop. For example, corti-
cotrope SOCS-3 induction by gp130-linked cytokines serves to 
abrogate the ligand-induced JAK-STAT cascade and block pro- 
opiomelanocortin (POMC) transcription and ACTH secretion. 
This rapid on-off regulation of ACTH secretion provides a plastic-
ity for the endocrine response to changes in environmental signal-
ing and serves to maintain homeostatic integrity.14

External/internal
environmental

signals

Uterine
contraction
Lactation
(oxytocin)

Water
balance

(vasopressin)

Central nervous
system

Electric or chemical
transmission

Hypothalamus Axonal transport

Oxytocin, vasopressin

Neurohypophysis

Release

Releasing hormones (ng)

Adenohypophysis

Target glands

Ultimate hormone (µg-mg)

Hormonal response

Anterior pituitary
hormones (µg)

Short
feedback

loop

Fast
feedback

loop

Long
feedback

loop

• Fig. 1.3 Peripheral feedback mechanism and a millionfold amplifying cascade of hormonal signals. Envi-
ronmental signals are transmitted to the central nervous system, which innervates the hypothalamus, 
which responds by secreting nanogram amounts of a specific releasing hormone. These are transported 
down a closed portal system, pass the blood-brain barrier at either end through fenestrations, and bind to 
specific anterior pituitary cell membrane receptors to elicit secretion of micrograms of specific anterior pitu-
itary hormones. These hormones enter the venous circulation through fenestrated local capillaries, bind 
to specific target gland receptors, trigger release of micrograms to milligrams of daily hormone amounts, 
and elicit responses by binding to receptors in distal target tissues. Peripheral hormone receptors enable 
widespread cell signaling by a single initiating environmental signal, thus facilitating intimate homeostatic 
association with the external environment. Arrows with a large dot at their origin indicate a secretory pro-
cess. (From Normal AW, Litwack G. Hormones. 2nd ed. New York: Academic Press; 1997:14.)
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In addition to the central nervous system–neuroendocrine 
interface mediated by hypothalamic chemical signal transduction, 
the central nervous system directly controls several hormonal 
secretory processes. Posterior pituitary hormone secretion occurs 
as direct efferent neural extensions. Postganglionic sympathetic 
nerves also regulate rapid changes in renin, insulin, and glucagon 
secretion, while preganglionic sympathetic nerves signal to adre-
nal medullary cells eliciting epinephrine release. 

Hormone Measurement
Endocrine function can be assessed by measuring levels of basal 
circulating hormone, evoked or suppressed hormone, or hormone-
binding proteins. Alternatively, hormone function can be assessed. 
When a feedback loop exists between the hypothalamic-pituitary 
axis and a target gland, the circulating level of the pituitary trophic 
hormone, such as TSH or ACTH, is typically an exquisitely sensi-
tive index of deficient or excessive function of the thyroid or the 
adrenal cortex, respectively. Meaningful strategies for timing hor-
monal measurements vary from system to system. In some cases, 
circulating hormone concentrations can be measured in randomly 
collected serum samples. This measurement, when standardized 
for fasting, environmental stress, age, and gender, is reflective of 
true hormone concentrations only when levels do not fluctuate 
appreciably. For example, thyroid hormone, PRL, and IGF1 levels 
can be accurately assessed in fasting morning serum samples. On 
the other hand, when hormone secretion is clearly episodic, timed 
samples may be required over a defined time course to reflect hor-
mone bioavailability. Thus, early morning and late evening cortisol 
measurements are most appropriate. A 24-hour sampling for GH 
measurements, with samples collected every 2, 10, or 20 minutes, 
is expensive and cumbersome, yet may yield valuable diagnostic 
information. Random sampling may also reflect secretion peaks or 
nadirs, thus confounding adequate interpretation of results.

In general, confirmation of failed glandular function is made 
by attempting to evoke hormone secretion by recognized stimuli. 
Testing of pituitary hormone reserve may be accomplished by 

injecting appropriate hypothalamic-releasing hormones. Injec-
tion of trophic hormones, including TSH and ACTH, evokes 
specific target gland hormone secretion. Pharmacologic stimuli 
(e.g., metoclopramide for induction of PRL secretion) may also 
be useful tests of hormone reserve. In contrast, hormone hyperse-
cretion can best be diagnosed by suppressing glandular function. 
Failure to appropriately suppress GH levels after a standardized 
glucose load implies inappropriate GH hypersecretion. Failure to 
suppress insulin secretion during hypoglycemia indicates inappro-
priate hypersecretion of insulin and should prompt a search for 
the cause, such as an insulin-secreting tumor.

Radioimmunoassays use highly specific antibodies that 
uniquely recognize the hormone, or a hormone fragment, to 
quantify hormone levels. Enzyme-linked immunosorbent assays 
(ELISAs) use enzyme-conjugated antibodies, and enzyme activity 
is reflective of hormone concentration. Immunometric assays use 
two antibodies directed to different epitopes of a polypeptide hor-
mone: one “capture” antibody that isolates the hormone to a solid 
support and one “signal” antibody coupled to a signal-generating 
molecule such as acridinium ester or an enzyme. These sensitive 
techniques have allowed ultrasensitive measurements of physi-
ologic hormone concentrations. Hormone-specific receptors may 
be used in place of the antibody in a radioreceptor assay. However, 
all antibody-based assays may be subject to artifacts, which should 
be kept in mind especially when the assay results are discordant 
with the clinical picture. 

Endocrine Diseases
Endocrine diseases fall into four broad categories: (1) hormone 
overproduction, (2) hormone underproduction, (3) altered tissue 
responses to hormones, and (4) tumors of endocrine glands. An 
additional albeit atypical fifth category is exemplified by one kind 
of hypothyroidism in which overexpression of a hormone-inacti-
vating enzyme in a tumor leads to thyroid hormone deficiency. 
Other disorders of inadequate hormone inactivation include 
apparent mineralocorticoid excess, vitamin D 24- hydroxylase 
deficiency, and X-linked hypophosphatemic rickets (PHEX 
deficiency).

Hormone Overproduction
Occasionally, hormones are secreted in increased amounts 
because of genetic abnormalities that cause abnormal regulation 
of hormone synthesis or release. For example, in glucocorticoid- 
remediable hyperaldosteronism, an abnormal chromosomal 
crossover event creates a fusion gene that encodes a protein with 
aldosterone synthase activity under the control of the ACTH- 
regulated 11β-hydroxylase promoter. More often, diseases of hor-
mone overproduction are associated with an increase in the total 
number of hormone-producing cells. For example, hyperthyroid-
ism associated with Graves disease, in which antibodies mimic 
TSH and activate the TSH receptors on thyroid cells, is accompa-
nied by dramatic increase in thyroid cell proliferation and increased 
synthesis and release of thyroid hormone from each thyroid cell. 
In this example, the increase in thyroid cell number represents 
a polyclonal expansion of thyroid cells, in which large numbers 
of thyroid cells proliferate in response to an abnormal stimulus. 
However, most endocrine tumors are not polyclonal expansions 
but instead represent monoclonal expansions of a single mutated 
cell. Pituitary and parathyroid tumors, for example, are usually 
monoclonal expansions in which somatic mutations in multiple 

CNS Inputs

Pituitary trophic
hormone

Hypothalamus

Target gland

Pituitary
Tier II
Paracrine cytokines
and growth factors

Tier III
Peripheral
hormones

Tier I
Hypothalamic
hormones

• Fig. 1.4 Model for regulation of anterior pituitary hormone secretion by 
three tiers of control. Hypothalamic hormones impinge directly on their 
respective target cells. Intrapituitary cytokines and growth factors regu-
late trophic cell function by paracrine (and autocrine) control. Peripheral 
hormones exert negative feedback inhibition of respective pituitary trophic 
hormone synthesis and secretion. CNS, central nervous system. (From 
Ray D, Melmed S. Pituitary cytokine and growth factor expression and 
action. Endocr Rev. 1997;18:206–228.)
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tumor suppressor genes and proto-oncogenes occur. These muta-
tions lead to an increase in proliferation or survival of the mutant 
cells. Sometimes this proliferation is associated with abnormal 
secretion of hormone from each tumor cell. For example, mutant 
Gsα proteins in somatotrophs can lead to both increased cellular 
proliferation and increased secretion of GH from each tumor cell. 

Hormone Underproduction
Underproduction of hormone can result from a wide variety of 
processes, ranging from surgical removal of parathyroid glands 
during neck surgery, to tuberculous destruction of adrenal glands, 
to iron deposition in pancreatic beta cells of islets in hemochro-
matosis. A frequent cause of destruction of hormone-producing 
cells is autoimmunity. Autoimmune destruction of beta cells in 
type 1 diabetes mellitus or of thyroid cells in chronic lympho-
cytic (Hashimoto) thyroiditis are two of the most common dis-
orders treated by endocrinologists. Recently a direct passage of 
insulin fragments by exocytosis from pancreatic islets to lym-
phoid tissue has been shown to trigger autoimmune diabetes in 
mice.15 Multiple genetic abnormalities can also lead to decreased 
hormone production. These disorders can result from abnormal 
development of hormone-producing cells (e.g., hypogonadotropic 
hypogonadism caused by KAL gene mutations), from abnormal 
synthesis of hormones (e.g., deletion of the GH gene), or from 
abnormal regulation of hormone secretion (e.g., the hypoparathy-
roidism associated with activating mutations of the parathyroid 
cell’s  calcium-sensing receptor). Drugs are important causes of 
endocrine gland dysfunction as exemplified by immune check-
point inhibitors leading to multiple endocrinopathies. 

Altered Tissue Responses to Hormones
Resistance to hormones can be caused by a variety of genetic dis-
orders. Examples include mutations in the GH receptor in Laron 
dwarfism and mutations in the Gsα gene in the hypocalcemia of 
pseudohypoparathyroidism type 1A. Insulin resistance in muscle 
and liver central to the cause of type 2 diabetes mellitus is com-
plex in origin, resulting from inherited variations in many genes, 
as well as from theoretically reversible physiologic stresses. Type 2 
diabetes is also an example of a disease in which end-organ insen-
sitivity is worsened by signals from other organs, in this case by 
signals originating in fat cells. In other cases, the target organ of 
hormone action is more directly abnormal, as in PTH resistance 
occurring with renal failure.

Increased end-organ function can be caused by mutations in 
signal reception and propagation. For example, activating muta-
tions in TSH, LH, and PTH receptors can cause increased activity 
of thyroid cells, Leydig cells, and osteoblasts, even in the absence 
of ligand. Similarly, activating mutations in the Gsα protein can 
cause precocious puberty, hyperthyroidism, and acromegaly in 
McCune-Albright syndrome. 

Tumors of Endocrine Glands
Tumors of endocrine glands often result in hormone overproduc-
tion. Some endocrine gland tumors produce little if any hormone 
but cause disease by local, compressive symptoms or by meta-
static spread. Examples include so-called nonfunctioning pitu-
itary tumors, which are usually benign but can cause a variety of 
symptoms due to compression of adjacent structures, and thyroid 
cancer, which can metastasize without causing hyperthyroidism. 

Excessive Hormone Inactivation or Destruction
Although most enzymes important for endocrine systems activate 
a prohormone or precursor protein, there are also those whose 
function is to inactivate the hormone in a physiologically regulated 
fashion. An example is the type 3 iodothyronine deiodinase (D3), 
which inactivates T3 and T4 by removing an inner ring iodine 
atom from the iodothyronine, blocking its nuclear receptor bind-
ing. Large infantile hepatic hemangiomas express high D3 levels, 
causing “consumptive hypothyroidism,” because thyroid hormone 
is inactivated at a more rapid rate than it can be produced.16,17 
Furthermore, D3 may also be induced in other tumors by tyrosine 
kinase inhibitors. In theory, accelerated destruction of other hor-
mones could occur from similar processes as yet to be determined. 

Diagnostic and Therapeutic Uses of 
Hormones
In general, hormones are used pharmacologically for their replace-
ment or suppressive effects. Hormones may also be used for diag-
nostic stimulatory effects (e.g., hypothalamic hormones) to evoke 
target organ responses or to diagnose endocrine hyperfunction 
by suppressing hormone hypersecretion (e.g., T3). Ablation of 
endocrine gland function due to genetic or acquired causes can 
be restored by hormone replacement therapy. Thyroid hormones 
and some steroids can be replaced orally, whereas peptide hor-
mones and analogues (e.g., insulin, PTH, GH) are administered 
parenterally or absorbed through mucous membranes (inhaled 
insulin, intranasal desmopressin). Gastrointestinal absorption and 
first-pass kinetics determine oral hormone dosage and availability. 
Physiologic replacement can achieve both appropriate hormone 
levels (e.g., thyroid) and approximate hormone secretory patterns 
(e.g., GnRH delivered intermittently via a pump). Hormones can 
also be used to treat diseases associated with glandular hyperfunc-
tion. Long-acting depot preparations of somatostatin receptor 
ligands suppress GH hypersecretion in acromegaly and hypersecre-
tion of diarrhea-causing mediators from neuroendocrine tumors 
of the pancreas and small intestine. Estrogen receptor antagonists 
(e.g., tamoxifen) are useful for some patients with breast cancer, 
and GnRH analogues may downregulate the gonadotropin axis 
and benefit patients with prostate cancer.

Novel formulations of receptor-specific hormone ligands are 
now being clinically developed (e.g., estrogen agonists/antago-
nists, somatostatin receptor subtype-specific ligands, or peroxi-
some proliferator-activated receptor alpha [PPARα] ligands), 
resulting in more selective therapeutic targeting. Modes of hor-
mone injection (e.g., for PTH) may also determine therapeutic 
specificity and efficacy. Improved hormone delivery systems, 
including computerized minipumps, intranasal sprays (e.g., for 
desmopressin), pulmonary inhalers, depot intramuscular injec-
tions, and orally bioavailable peptide formulations, will also 
enhance patient compliance and improve ease of administration. 
Cell-based therapies using the reprogramming of human cells to 
perform differentiated functions, either through differentiation 
of induced pluripotent stem cells or directed differentiation of 
one somatic cell type into another, are under active investiga-
tion.18 Novel technologies offer promise of marked prolongation 
in the half-life of peptide hormones, thereby requiring infre-
quent administration. For example, a once weekly preparation of 
 glucagon-like peptide-1 (GLP-1) analogues is used in the treat-
ment of type 2 diabetes.
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Important progress has been made in the therapeutic use of 
hormones. Although delivery of insulin usually still relies on fre-
quent administration by injection and close monitoring by the 
patient, purity of the insulin preparations, as well as novel deliv-
ery devices, has enhanced patient compliance and quality of life. 
Preparations with differing pharmacokinetics allow the normal 
physiology of insulin secretion to be more closely mimicked. 
Continuous administration via subcutaneous pump infusion 
enhances therapeutic effectiveness in carefully selected patients. 
These include closed-loop systems, in which the dose of insulin 
is automatically adjusted depending on continuously monitored 
interstitial glucose concentrations. Implementation of such sys-
tems has the potential to substantially reduce the burden of this 
disease. However, hormones are biologically powerful molecules 
that exert therapeutic benefit and effectively replace pathologic 
deficits. They should not be prescribed without clear-cut indica-
tions and should not be administered without careful evaluation 
by an appropriately qualified medical practitioner. 

Future Perspectives
An introduction to the principles underlying endocrinology 
should end by emphasizing the rapidly changing dynamics of 
discovery in this field and attempting to foresee what remains 
to be discovered. New hormones are continually being discov-
ered, from the recent focus on major regulators of metabolism 
and phosphate homeostasis (FGF19, FGF21, and FGF23) to the 
continued quest to identify ligands for orphan nuclear and G 
protein–coupled receptors.19 Presumably other equally impor-
tant hormones remain to be discovered. The observation that 

nuclear receptors, like most transcription factors, bind to thou-
sands of specific sites within the cell’s nucleus stresses how little 
we understand about hormone action. Even the name “nuclear 
receptors” may be viewed in the future as misleading, since 
there is an increasing appreciation of extranuclear, rapid actions 
of nuclear receptors. Many of our diagnostic tests are severely 
limited by both technology and our inability to foresee novel 
diagnostic targets. For example, the “disappearance” of isolated 
GH deficiency when many children with that diagnosis achieve 
adulthood means either that we have little understanding of the 
etiology/pathogenesis of that childhood deficiency or that our 
diagnostic tools today yield many false-positive results. Although 
endocrinologists pride themselves with having logical treatments 
for many diseases, these treatments seldom address their under-
lying causes. We have no satisfactory tools for preventing auto-
immune endocrine deficiencies or for preventing the benign 
tumors that underlie many diseases characterized by hormone 
excess. Treatments for diseases such as type 1 diabetes, although 
highly effective, are still very obtrusive in the lives of patients 
with this disease.

This new edition communicates major advances that have been 
made in our field over the past 5 years, yet gaps in our knowledge 
about endocrinology remain. Importantly, debilitating chronic 
endocrine illnesses with significant morbidity (e.g., diabetes and 
Cushing disease) still pose significant diagnostic and therapeutic 
challenges.
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Cell Surface Hormone Receptors, 16 

Coupling of Cell Surface Receptors to Intracellular Signaling, 27 

KEY POINTS 

Hormones signal to target cells via receptors on the cell surface 
or in the cell nucleus. 
Polypeptide hormones act at the cell surface and trigger a 
cascade of events in the cytoplasm as well as in the nucleus that 
alter the function of their target cells. 
In addition to polypeptide hormones, many nonpolypeptide 
hormones such as catecholamines signal via cell surface recep
tors. 
There are multiple classes of cell surface receptors, including 
ligand-gated ion channel receptors, G protein-coupled recep
tors, receptors with intrinsic enzymatic activity, and receptors 
that associate with enzymes. 
Some of the cell surface receptors have intrinsic catalytic activ
ity, whereas others depend on interaction with other signaling 
proteins to exert their actions. 

Introduction to Hormone Signaling 

The evolution of multicellularity enabled specialization of organs 
and tissues. As organs took on distinct functions, mechanisms 
were required to allow communication between tissues; this is the 
fundamental purpose of hormones. Hormones encode informa
tion about environmental or developmental conditions in one 
location and transmit that information to a separate location. This 
process ultimately requires that information move from outside of 
the target cell to its interior, so that cellular function can be altered 
to meet the needs of the organism. Specifically, the concentration 
of the substance must be detected by the target cell and converted 
into a change in cellular activity, a process known as signal trans
duction. The strategies used by hormones to affect cellular func
tion are analogous and, in many cases, identical to those used by 

Disease Caused by Defective Cell Surface Receptors, 31 

Ligands That Act Through Nuclear Receptors, 31 

Nuclear Receptor Signaling Mechanisms, 34 

Receptor Regulation of Gene Transcription, 37 

Nongenomic Actions of Nuclear Receptor Ligands, 40 

Ligand binding to the extracellular domain of cell surface receptors 
causes conformational changes in the receptors that activate enzy
matic activity and recruitment of cytoplasmic signaling proteins. 
Steroid and thyroid hormones signal via nuclear receptors. 
Some nuclear receptors transduce signals from vitamins, me
tabolites, and drugs acting as ligands to regulate reproduction, 
growth, and metabolism. 
Nuclear receptors work directly in the cell nucleus to regulate 
gene transcription, acting at the genome and recruiting coregu
lator proteins called corepressors and coactivators. 
Hormone binding to nuclear receptors causes a conformational 
change in the receptor that favors the recruitment of coactiva
tors to the specific genes that are regulated. 
Some nuclear receptors may work through additional pathways 
that involve nongenomic mechanisms. 

other extracellular agents such as neurotransmitters, drugs, and 
metabolites. However, classic endocrinology defines itself as the 
process by which extracellular signaling molecules use the blood
stream to travel from the organ of origin to the target tissue. By 
its nature, this process invariably results in dilution of the secreted 
molecule in the intravascular space, and thus, with rare exception, 
the target cell must be capable of detecting and responding to very 
low concentrations of hormone. 

In spite of the vanishingly small concentrations of hormones 
present in the circulation, classic endocrine organs are usually 
uniquely equipped to secrete substantial amounts of hormone. 
Much of the history of endocrinology is defined by purification of 
hormones from these specialized secretory tissues. In the earliest 
days, the discovery of a hormone usually followed a stereotypical 
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course of events: (1) A syndrome, often resembling some human 
disease, was associated with removal of an endocrine gland; (2) the 
abnormal phenotype would be corrected by the reimplantation 
of the absent organ; (3) the same cure would be accomplished by 
administration of an extract from the organ of interest; and (4) the 
active agent would be purified from the organ. The discovery of 
insulin represents the prototype for this series of observations, but 
the same process led to the identification of other hormones such 
as thyroid hormone and cortisol.

Hormones can be divided into two groups on the basis of where 
they function in a target cell. The first group includes hormones 
that interact with receptors at the cell surface. All polypeptide 
hormones (e.g., growth hormone [GH], insulin), monoamines 
(e.g., serotonin), and prostaglandins (e.g., prostaglandin E2) use 
cell surface receptors. The second group includes hormones that 
can enter cells. These hormones bind to intracellular receptors that 
function in the nucleus of the target cell to regulate gene expres-
sion. Classic hormones that use intracellular receptors include 
thyroid and steroid hormones.

It is worth noting that many molecules behave both as clas-
sical hormones that use the bloodstream to travel from their site 
of production to their site of action and as signaling molecules 
that do not meet that strict definition. For example, insulin-like 
growth factor 1 (IGF1) is produced and secreted by the liver 
under the positive influence of GH and circulates to target tissues 
like bone, but it is also produced locally by some tissues (e.g., 
chondrocytes at bone growth plates) to exert effects on neighbor-
ing cells. Similarly, norepinephrine is a neurotransmitter that is 
released at nerve endings and binds to cell surface receptors at 
postsynaptic membranes, but it is also secreted into the blood by 
the adrenal medulla, allowing it to act as a classic endocrine hor-
mone. Testosterone is a nuclear receptor ligand that is produced 
by the Leydig cells of the testis; it can circulate as a hormone and 
act on muscle, bone, and other tissues, but it also acts as a para-
crine agent on neighboring seminiferous tubules. Finally, many 
secreted molecules that are not regarded as classic hormones meet 
virtually all of the criteria used to define such agents. For exam-
ple, cytokines are released by immune cells at the site of inflam-
mation, but they also circulate in plasma and bind to cell surface 
receptors in the brain, evoking fever. In this sense, many circu-
lating molecules, including those produced exogenously (i.e., 
obtained from the diet or synthesized by commensal bacteria), 
could be regarded as having hormonal properties. The key point 
is that a complete understanding of cell surface and nuclear recep-
tor biology requires a more inclusive perspective than is typically 
achieved by adhering to a strict set of definitional criteria estab-
lished decades ago. Having said that, in the interest of brevity, this 
chapter focuses primarily on receptors that bind classic hormonal 
ligands, with examples drawn from other systems as needed to 
provide a more comprehensive picture that reflects our current 
understanding of receptor biology. 

Ligands That Act Through Cell Surface 
Receptors
The impermeability of the plasma membrane to peptides and 
small, water-soluble, charged molecules requires that recep-
tors that recognize such substances be located on the outer sur-
face of the cell. The limiting membrane of a typical eukaryotic 
cell is a 5-nm to 8-nm structure composed of proteins embed-
ded in a bilayer of phospholipids and cholesterol, forming the 

fluid-mosaic membrane. The phospholipid polar head groups face 
outward from the membrane, interacting with the hydrophilic 
milieu that comprises the extracellular fluid and the cytoplasm. 
Buried between these two charged surfaces are the hydrophobic 
lipid tails of the phospholipids made up of acyl groups, which are 
long chains of hydrocarbons derived from fatty acids. The strongly 
nonpolar environment prevents the diffusion of water-soluble 
molecules, including many hormones, across the membrane. Thus 
surface proteins are needed to detect the presence of extracellu-
lar ligands that cannot diffuse and are not transported into the 
cell. Information from this hormone-binding process must then 
be transmitted across the plasma membrane so that intracellular 
signaling can commence.

Classic Peptide Hormones
Most notable among the hormones that bind to cell surface recep-
tors are the peptide hormones, which vary in size from a hand-
ful to hundreds of amino acids. Examples of peptide hormones 
include the glycoproteins and the GH family of proteins secreted 
by the pituitary, the pancreatic hormones glucagon and insulin, 
and numerous peptides secreted from nonglandular organs, such 
as leptin from adipocytes and atrial natriuretic peptide from the 
heart (Table 2.1).

A hormone’s rate of secretion is closely tailored to its lifetime 
in the circulation and to its time course of action. In general, pep-
tide hormones are released from endocrine glands quickly, as they 
are preformed and stored in secretory vesicles or granules. In the 

  Hormones That Work on the Cell Surface

Peptides and Proteins
Adrenocorticotropic hormone (ACTH)
Antidiuretic hormone (ADH)
Atrial natriuretic peptide (ANP)
Calcitonin
Cholecystokinin
Corticotropin-releasing hormone (CRH)
Follicle-stimulating hormone (FSH)
Gastrin
Glucagon
Gonadotropin-releasing hormone (GnRH)
Growth hormone (GH)
Growth hormone–releasing hormone (GHRH)
Insulin
Insulin-like growth factor 1 (IGF1)
Luteinizing hormone (LH)
Oxytocin
Parathyroid hormone (PTH)
Prolactin (PRL)
Secretin
Somatostatin (SS)
Thyrotropin-releasing hormone (TRH)
Thyrotropin or thyroid-stimulating hormone (TSH)

Molecules Derived From Amino Acids
Dopamine (inhibits prolactin)
Epinephrine (also called adrenaline)
Norepinephrine (also called noradrenaline)
Serotonin

Eicosanoids
Prostaglandins: PGA1, PGA2, PGE2

TABLE 2.1
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course of synthesis, peptide hormones are diverted to secretory 
vesicles via a regulated secretory pathway (Fig. 2.1). The cyto-
plasm of endocrine glands containing such secretory vesicles, such 
as the endocrine pancreas, the anterior pituitary, and the parathy-
roid glands, is filled with 200-nm electron-dense granules that 
represent the packaged hormone awaiting secretion. Just as secre-
tion of hormones stored within vesicles can be evoked quickly, 
often within milliseconds, release can usually be terminated 
abruptly with great efficiency. Peptide hormones tend to have 
very short half-lives within the circulation, which allows blood 
levels to change rapidly in response to changes in secretion. Like 
the rapid changes in secretion and blood concentrations, initia-
tion of signaling tends to be rapid, which is facilitated by high on 
rates for hormone binding to receptors. In contrast, the off rate is 
often slow, which results in a high equilibrium binding constant 
that enables the receptors to detect the relatively low levels of hor-
mone in blood. However, a slow off rate is not compatible with 
the relatively rapid transient nature of peptide hormone–initiated 
signaling, suggesting mechanisms must exist for turning off the 
hormonal signal other than simple diffusion of the hormone off 
of the receptor.

A notable exception to the general rule that peptide hormones 
turn over quickly and have short durations of action is provided 
by IGF1. Unlike most peptide hormones, IGF1 circulates in the 
bloodstream bound to one or more binding proteins, which has 
two important consequences. First, the concentration of total 
IGF1 in blood is much greater than that of the unbound, bio-
logically active hormone. Second, the lifetime of IGF1 is greatly 
extended, such that circulating levels of the hormone change 
slowly over the course of hours or days. As predicted by these 

properties, IGF1 primarily influences phenotypes that are modi-
fied over extended periods, such as growth and differentiation, 
and in marked contrast to its cousin insulin, most of the cellular 
targets of IGF1 are transcriptional. 

Nonpeptide Hormones That Act at Cell Surface 
Receptors
In addition to peptide hormones, there are small, hydrophilic 
hormones related to monoamine neurotransmitters that bind cell 
surface receptors. These include adrenergic agents such as nor-
epinephrine as well as other amino acid–derived water-soluble 
molecules such as melatonin, serotonin, and histamine. Like pep-
tide hormones, these hormones can be stored in dense secretory 
vesicles, but they are more typically packaged into small, approxi-
mately 50-nm electron-lucent vesicles that are similar morpho-
logically to vesicles in neural and neuroendocrine cells. The major 
difference is that in the presynaptic cleft, the vesicles are arranged 
in a tightly packed array at the membrane.

Interestingly, while most lipophilic molecules have intracellular 
receptors, there is at least one class of lipid that breaks this rule. 
The eicosanoids are a group of extracellular signaling molecules 
derived from 20-carbon fatty acids that includes the leukotrienes 
and prostaglandins. Many biologically active eicosanoids bind to 
cell surface receptors, which initiate their functions.1

The recent expansion of messenger types and the novel modes 
of interorgan communication have dramatically changed the tra-
ditional view of endocrinology such that all cell types can poten-
tially both send and receive messages. One of the more interesting 
recent additions to the assortment of hormone-like molecules has 

Nucleus

Cisternae

4321

Transition elements Secretory vesicles

Immature secretory granules

Mature secretory granules

Lysosome

RER
SER/Golgi

Capillary lumen

Plasma membrane

• Fig. 2.1 Subcellular organelles involved in transport and secretion of polypeptide hormones or other 
secreted proteins within a protein-secreting cell. (1) Synthesis of proteins on polyribosomes attached to 
rough endoplasmic reticulum (RER) and vectorial discharge of proteins through the membrane into the 
cisterna. (2) Formation of shuttling vesicles (transition elements) from endoplasmic reticulum followed by 
their transport to and incorporation by the Golgi complex. (3) Formation of secretory granules in the Golgi 
complex. (4) Transport of secretory granules to the plasma membrane, fusion with the plasma mem-
brane, and exocytosis resulting in the release of granule contents into the extracellular space. Notice that 
secretion may occur by transport of secretory vesicles and immature granules or by transport of mature 
granules. Some granules are taken up and hydrolyzed by lysosomes (crinophagy). Golgi, Golgi complex; 
SER, smooth endoplasmic reticulum. (From Habener JF. Hormone biosynthesis and secretion. In: Felig P, 
Baxter JD, Broadus AE, et al, eds. Endocrinology and Metabolism. New York: McGraw-Hill; 1981:29–59.)
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been circulating metabolites such as lactate, ketone bodies, and 
succinate, as well as ions such as calcium2 (Table 2.2). An even 
more distant modification of the original definition of hormone is 
the idea that metabolites produced by microbes in the gut, such 
as short-chain fatty acids, can signal by binding to cell surface 
receptors.3 

Binding Properties of Cell Surface Receptors
When a hormone or hormone-like molecule arrives at a target 
cell, at least three critical components are required to induce the 
appropriate biologic response. First, there has to be recognition 
of the hormone as different from all other components of the 
extracellular milieu. This is an issue of specificity (the ability to 
distinguish the hormone from other structurally related mol-
ecules). Second, the receptor must be able to recognize the low 
concentration of hormone found in the blood, which is an issue 
of sufficient affinity of the receptor for the hormone. Third, the 
initial recognition step mediated by the receptor must be con-
verted into a single action or a defined set of cellular events. 
Studies of the binding properties of hormones and neurotrans-
mitters crystallized into a fundamental rule governing the action 
of extracellular agents: A biologic effect is directly proportional 
to the ligand occupancy of the receptor. A subtle but important 
modification to occupancy theory is the notion of spare recep-
tors, which describes the situation in which a maximal biologic 
response is achieved by occupancy of only a portion of the avail-
able receptors. One consequence of the existence of spare recep-
tors is that a decrease in the number of cellular receptors results in 
a change in the ED50 (effective dose for eliciting a 50% response) 
for a hormone but does not necessarily alter the maximal biologic 
response, as detailed later for insulin.4,5

As noted, a fundamental characteristic of a cell surface recep-
tor is the ability to bind hormone with high specificity and high 
affinity. In addition, because there is a limited number of recep-
tors, binding is saturable, such that adding additional ligand 
above a certain level results in no additional binding and no fur-
ther increment in downstream biologic activity. Specificity, affin-
ity, and saturability can be established experimentally by assessing 
the binding of ligands to receptors, using radioactive ligands in a 
variety of in vitro binding assays.6 Authentic physiologic receptors 
for a given hormone will display a greater affinity for the cognate 
hormone than other potentially competing circulating molecules. 

In addition, the half maximal binding for a hormone to its real 
receptor will always be in the range of the circulating free concen-
tration of that hormone. 

Cell Surface Hormone Receptors
Cell surface receptors can be grouped conveniently into four 
classes: ligand-gated ion channel receptors, G protein–coupled 
receptors, receptors with intrinsic enzymatic activity, and recep-
tors that associate with enzymes.

Ligand-Gated Ion Channels
The simplest form of a cell surface signaling system is one in which 
both hormone-binding and signal-generating functions are pro-
vided by a single protein or complex of proteins. Ligand-gated 
ion channels fall into this category. They are made up of two key 
components: a ligand-binding domain accessible from the surface 
of the cell and a transmembrane domain containing a channel. 
Binding of ligand to the exofacial surface of the receptor generates 
a conformational change that results in the opening of a pore, 
allowing specific ions to travel through the channel across the 
plasma membrane (Fig. 2.2).

The prototype and founding member of the family of ligand-
gated ion channels is the nicotinic acetylcholine receptor, which 
is present on some neurons and on the postsynaptic membrane 
of the neuromuscular junction.7 When a nerve impulse arrives 
at the presynaptic terminal, depolarization leads to an increase 
in cytosolic calcium and secretion of acetylcholine. The secreted 
acetylcholine binds to its receptor on the muscle, which elicits a 
conformational change that opens the pore and allows sodium 
and potassium ions to pass in and out of the cell, respectively. 
This leads to depolarization and muscle contraction. The struc-
ture of the acetylcholine receptor, which is made up of four dif-
ferent peptides that constitute five subunits, defines a family 
of receptors that also includes the 5-hydroxytryptamine type 
3 (5HT3R), glycine, and inhibitory GABA type A receptors. 
Another shared characteristic of pentameric receptors is a con-
served 15-amino acid dicysteine loop in the extracellular ligand-
binding domain (LBD), giving this family its alternative name, 
the cys-loop receptors.8

Most ligand-gated ion channels, which when activated can 
elicit microsecond changes in signal transduction, serve as neu-
rotransmitter receptors rather than receptors for classic hormones. 
A notable exception involves the receptors for some hypothalamic 
releasing factors, which are discharged from hypothalamic neurons 
into the portal circulation to regulate the secretion of hormones 
from the anterior pituitary. For example, it is thought that sero-
tonin regulates release of prolactin by binding to the 5HT3R recep-
tor in lactotrophs of the anterior pituitary.9 Glycine and GABA 
receptors are present in the pituitary gland, but their physiologic 
functions appear complex and remain imperfectly understood. 
Another class of ligand-gated ion channels, the purinergic cation 
receptors, are also expressed in the pituitary and most likely func-
tion in an autocrine/paracrine fashion in response to extracellular 
adenosine triphosphate (ATP). 

G Protein–Coupled Receptors
The largest family of cell surface receptors is defined by their use 
of heterotrimeric G proteins for signaling, leading to their des-
ignation G protein–coupled receptors (GPCRs). These receptors 

  Receptors for Metabolites and Ions

Metabolite Receptor

Lactate GPR81

Ketone bodies GPR109A

3-Hydroxyoctanoate GPR109B

Succinate GPR91

α-Ketoglutarate GPR80/99

Long-chain fatty acids GPR40, GPR120

Medium-chain fatty acids GPR84

Short-chain fatty acids GPR41, GPR43

Calcium CASR

TABLE 2.2
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have seven 25–amino acid α-helical segments that pass through 
the plasma membrane, with the amino (N)-terminus and carboxy 
(C)-terminus outside the cell and in the cytoplasm, respectively, 
leading to the name seven transmembrane (7TM) proteins.10 There 
are more than 800 GPCR family members, with the vast majority 
being olfactory receptors. The diversity of ligands capable of bind-
ing to GPCRs is remarkable, ranging from a single photon to large 
proteins and including ions, odorants, amines, peptides, lipids, 
nucleotides, and metabolic intermediates. The smaller hormones, 
including catecholamines, bind to their GPCRs within the trans-
membrane-spanning region, oriented parallel to the cell surface; 
larger hormones bind to the extracellular N-terminus, which itself 
can range in size from 10 to 600 amino acids,11 in addition to 
interacting with the transmembrane-spanning region (Fig. 2.3). 
The GPCR family has been divided into five subfamilies based 
on primary sequence and phylogeny, named the glutamate, rho-
dopsin, adhesion, frizzled/taste2, and secretin families.12 Many 
hormones, including some hypothalamic releasing factors, the 
glycoprotein hormones secreted by the pituitary, and the amines, 
bind to members of the rhodopsin-like family. On the other hand, 
glucagon, parathyroid hormone (PTH), calcitonin, and some 
hypothalamic hormones, such as GH-releasing factor and cortico-
tropin-releasing factor, bind to members of the secretin-like fam-
ily. For many GPCRs, the endogenous ligand and its function are 
not known; these GPCRs are known as orphan receptors. 

Signaling by Heterotrimeric G Proteins
An important advance in the understanding of GPCRs occurred 
when Bourne and associates took advantage of the lethality of 
cyclic adenosine monophosphate (cAMP) toward lymphoma cells 
to select mutant lines resistant to the actions of the β-adrenergic 
agent isoproterenol.13 Because the mutant cell lines lost respon-
siveness to a number of nonadrenergic agonists, it was clear that 
the genetic lesion did not reside in the β-adrenergic receptor but 
in a downstream component. When the signaling module that 
restored hormone responsiveness to the deficient membranes was 
purified, it turned out to be a heterotrimeric G protein complex, 
now known as Gs.14 Gs binds a single guanosine triphosphate 
(GTP) to its α-subunit, which causes the α-subunit to dissociate 

from its other two (β, γ) subunits. The GTP-bound α-subunit 
of Gs is necessary and sufficient for activation of its downstream 
target, adenylyl cyclase. Like Gs, all G protein complexes are 
composed of one member each of the α-subunit, β-subunit, and 
γ-subunit families. Which exact subunit family member deter-
mines the downstream effector(s). Sixteen distinct genes encode 
about 20 different G protein α-subunits, which can be divided 
into four groups based on both structure and function: Gαs, Gαi, 
Gαq/11, and Gα12.

10 The Gαs family has only two members, Gαs 
and the G protein for the olfactory receptor, Gαolf; both couple 
to activation of adenylyl cyclase. The Gαi group of eight includes 
three Gαi proteins, all of which inhibit adenylyl cyclase; two Gα0 
proteins that are abundant brain proteins whose multiple targets 
are still not completely defined; two Gαt proteins that couple pho-
toreceptors to cAMP phosphodiesterase (PDE); and Gαz, which 
inhibits potassium channels. The Gαq/11 subfamily consists of six 
members, all of which activate the enzyme phospholipase C beta 
(PLCβ), generating the second messengers diacylglycerol (DAG) 
and inositol trisphosphate (IP3). Gα12 and Gα13, which inhibit 
and activate the guanine nucleotide exchange factor, RhoGEF, 
respectively, form the final group. The combinational possibilities 
are complex, with 5 β-subunit isoforms and over 12 γ-subunit 
isoforms.

The key operational feature of G protein signaling is that the 
system behaves like a timed switch. Engagement of hormone with 
its cognate receptor promotes its association with a heterotrimeric 
G protein comprised of subunits Gα, Gβ, and Gγ (Fig. 2.4). This 
stimulates dissociation of guanosine diphosphate (GDP) from the 
α-subunit, allowing GTP to bind to the unoccupied site as a result 
of its greater intracellular concentration compared to GDP. The 
occupied receptor then detaches from the G protein. GTP loading 
of the G protein also induces the trimeric G protein complex to 
dissociate into the α-subunit and a dimeric β/γ-subunit, at least 
in vitro; it is not clear that dissociation actually occurs in an intact 
cell. In most cases, the α-subunit modulates an associated ampli-
fier, which in the case of Gs is adenylyl cyclase, but other targets 
of α-subunits include those referred to previously. The β/γ-dimer 
can also interact with and regulate downstream signaling mol-
ecules. For example, the β/γ-dimer activates potassium channels 
following ligand binding to the muscarinic acetylcholine receptor. 
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• Fig. 2.2 Ligand-gated ion channels are transmembrane proteins that comprise at least two domains, a 
ligand-binding domain and a membrane-spanning domain capable of functioning as a pore. When a ligand 
binds, it induces a conformational change in the receptor such that the pore opens to the passage of ions, 
in this case sodium ions, down their electrochemical gradient.
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• Fig. 2.3 The G protein–coupled receptor (GPCR) superfamily: diversity in ligand binding and structure. Each panel depicts members of the GPCR superfamily. 
The seven-membrane-spanning α-helices are shown as cylinders, with the extracellular amino (N)-terminus and three extracellular loops above them and the 
intracellular carboxy (C)-terminus and three intracellular loops below. The superfamily can be divided into three subfamilies on the basis of amino acid sequence 
conservation within the transmembrane helices. Family 1 includes the opsins (A), in which light (arrow) causes isomerization of retinal covalently bound within the 
pocket created by the transmembrane helices (bar); monoamine receptors (B), in which agonists (arrow) bind noncovalently within the pocket created by the 
transmembrane helices (bar); receptors for peptides such as vasopressin (C), in which agonist binding (arrow) may involve parts of the extracellular N-terminus 
and loops and the transmembrane helices (bar); and glycoprotein hormone receptors (D), in which agonists (oval) bind to the large extracellular N-terminus, acti-
vating the receptor through undefined interactions with the extracellular loops or transmembrane helices (arrow). (E) Family 2 includes receptors for peptide hor-
mones such as parathyroid hormone and secretin. Agonists (arrow) may bind to residues in the extracellular N-terminus and loops and to transmembrane helices 
(bar). (F) Family 3 includes the extracellular Ca2+-sensing receptor and metabotropic glutamate receptors. Agonists (circle) bind in a cleft of the Venus flytrap–like 
domain in the large extracellular N-terminus, activating the receptor through undefined interactions with the extracellular loops or transmembrane helices (arrow).

Critical to signal transduction by G proteins is that they remain 
active as long as GTP is bound. The rate of conversion of nucleo-
tide GTP to GDP determines both the timing for inactivation 
of signaling and reassembly of subunits. Thus the G protein can 
exist in two distinct states: bound to GTP and active or bound 

to GDP and inactive; the time spent in each condition defines 
the strength of signaling. G protein α-subunits have low levels of 
intrinsic GTPase activity, but this can be enhanced by association 
with the regulators of G protein signaling (RGS) proteins.15 Thus 
RGS proteins, which function as GTPase accelerating proteins 
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(GAPs), serve to shorten the duration of signaling by G proteins, 
providing another important site of regulation. Many members 
of the large family of RGS proteins contain within their primary 
sequences canonical domains indicative of other functions and 
undergo complex post-translational modification. Modulation 
of the levels of RGS proteins affords a mechanism for signaling 
pathways to communicate with each other. For example, both 
thyroid-stimulating hormone (TSH, thyrotropin) and PTH sig-
nal through a Gs-cAMP pathway to increase expression of RGS2, 
which feeds back to inhibit Gs and to antagonize other pathways 
that depend on Gq.

Another GPCR regulatory system involves a family of proteins 
called arrestins (see Fig. 2.4). Two of the four arrestins (1 and 4) 
have been designated visual arrestins because they are expressed 
only in photoreceptor cells, while two arrestins (2 and 3) are 
expressed ubiquitously; the latter two are also called β-arrestins 
1 and 2. Ligand binding to a GPCR not only signals the dis-
sociation of the G protein complex as described earlier, but also 

promotes a conformational change in the GPCR that often leads 
to phosphorylation of the receptor by a G protein receptor kinase 
(GRK).16 GRKs are represented by a family of seven related 
kinases. Phosphorylation of the GPCR at serine and threonine 
residues by GRKs allows the binding of an arrestin, which steri-
cally uncouples the GPCR from the G protein, terminating the 
signal. Binding to the receptor also alters the conformation of the 
arrestin such that it interacts with components of the endocytosis 
system such as clathrin.17 The GPCR is escorted to the sorting 
endosome where it either recycles back to the cell surface or is 
targeted to the lysosome for degradation. This system provides 
an efficient mechanism for homologous desensitization, in which 
there is receptor-specific downregulation of signaling pathways. 
This mechanism stands in contrast to negative regulation by sec-
ond messenger–dependent protein kinases, which phosphorylate 
and inhibit all susceptible GPCRs regardless if occupied by ligand. 
In addition to its role in the modulation of G protein signaling, 
β-arrestin has a well-defined function as a signaling intermediate. 
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• Fig. 2.4 The G protein guanosine triphosphatase (GTPase) and G protein–coupled receptor (GPCR) 
desensitization-resensitization cycle. In each panel, the shaded area denotes the plasma membrane, with 
the extracellular region above and the intracellular region below. In the basal state, the G protein is a 
heterotrimer with guanosine diphosphate (GDP) tightly bound to the α-subunit. The agonist-activated 
GPCR catalyzes release of GDP, which permits guanosine triphosphate (GTP) to bind. The GTP-bound 
α-subunit dissociates from the βγ-dimer. Arrows from the α-subunit to the effector and from the βγ-dimer 
to the effector indicate regulation of effector activity by the respective subunits. The arrow from effector to 
the α-subunit indicates regulation of its GTPase activity by effector interaction. Under physiologic condi-
tions, effector regulation by G protein subunits is transient and is terminated by the GTPase activity of the 
α-subunit. The latter converts bound GTP to GDP, thereby returning the α-subunit to its inactivated state 
with high affinity for the βγ dimer, which reassociates to form the heterotrimer in the basal state. In the basal 
state, the receptor kinase and arrestin are shown as cytosolic proteins. Dissociation of the GTP-bound 
α-subunit from the βγ-dimer permits the dimer to facilitate binding of receptor kinase to the plasma mem-
brane (arrow from βγ-dimer to receptor kinase). Plasma membrane binding permits the receptor kinase to 
phosphorylate the agonist-bound GPCR (P, depicted here as occurring on the carboxy-terminal tail of the 
GPCR, although sites on intracellular loops are also possible). GPCR phosphorylation facilitates arrestin 
binding to the GPCR, resulting in desensitization. Endocytic trafficking of arrestin-bound GPCR and recy-
cling to the plasma membrane during resensitization are not shown.
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β-arrestin is now known to bind multiple members of the Src fam-
ily of tyrosine kinases as well as other proteins, such as mitogen-
activated protein kinases (MAPKs, also known as extracellular 
regulated kinases [ERKs]), phosphoinositide 3-kinase (PI3K), 
Akt, PDE4, and c-Jun N-terminal kinase-3.18,19

One of the most interesting aspects of GPCR signaling is the 
ability of GPCRs to undergo functional selectivity (also known as 
biased signaling), defined as the ability of ligands to stimulate dis-
tinct downstream signaling pathways, presumably due to stabiliza-
tion of distinct conformational states of the receptor.20 For GPCR 
receptors that can activate multiple G proteins, biased signaling 
refers to the ability to preferentially activate pathways downstream 
of a subset of the G proteins. For GPCR receptors that can acti-
vate arrestins, biased signaling usually refers to the ability of the 
receptor to favor the G protein response and minimize the arrestin 
response. Most of the research activity around biased signaling has 
taken place in the pharmaceutical industry, where the principle 
has been used in attempts to develop more specific therapeutics. 
For example, attempts have been made to develop opioid agonists 
that activate the analgesic effects mediated by G protein signal-
ing but are devoid of arrestin-dependent desensitization and tol-
erance.21,22 A similar strategy is being attempted to dissociate G 
protein–mediated opioid analgesia from arrestin-mediated consti-
pation and respiratory depression.21,22 Which downstream path-
ways are initiated by activation of a given GPCR is affected by the 
type and concentration of the ligand itself, and also the recruit-
ment of specific GRKs, the subcellular location of the GPCR, and 
the time after ligand exposure.23 

Receptor Tyrosine Protein Kinases as Cell Surface 
Receptors
The receptors that make up the receptor tyrosine protein kinase 
(RTK) family use a number of strategies to accomplish the same 
goal: to convert the binding of ligand to the exofacial portion of 

the receptor to a change in the activity of a tyrosine protein kinase 
domain residing in the interior of the cell. All of these receptors 
are type I transmembrane proteins with an N-terminal hormone-
binding domain on the outside, a 25–amino acid hydrophobic 
segment that spans the membrane (the transmembrane domain), 
and a carboxy portion of the protein containing a kinase domain 
extending into the cytoplasm24 (Fig. 2.5). The intracellular cata-
lytic domain transfers phosphate from ATP to tyrosine residues in 
proteins, including the receptor itself. The 58 RTKs expressed in 
humans can be divided into about 20 subfamilies based on struc-
tural features. One of these groups is exemplified by the insulin 
receptor, which, unlike other RTKs, exists as a disulfide-linked 
tetramer in the basal state. Receptors in all other subgroups of 
RTKs, including receptors for fibroblast growth factor, platelet-
derived growth factors (PDGFs), and epidermal growth factor 
(EGF), exist as monomers, though there is evidence that many 
associate noncovalently into larger structures in the basal state.

Biochemical experiments involving affinity cross-linking and 
biosynthetic labeling identified the structure of the insulin recep-
tor and that of the highly related IGF1 receptor as a heterotet-
ramer, composed of two 125-kDa α-subunits and two 90-kDa 
β-subunits linked by disulfide bonds25,26 (Figs. 2.5 and 2.6). 
The receptor is synthesized as a single peptide with a cleavable 
signal sequence directing insertion cotranslationally into the 
membrane, and it is glycosylated and cleaved into the α and β 
chains in the Golgi complex.27 Even though they exist as two 
separate peptides in the mature protein, each pair of α and β 
chains behaves much like a receptor monomer found in other 
growth factor receptors. Affinity labeling by insulin shows cross-
linking to both the α-subunit and β-subunit, indicating that 
both are accessible to substances at the surface of the cell. Insulin 
binding has been long recognized to exhibit negative cooperativity, 
which means that the affinity for additional hormone decreases 
as the population of receptors binds more ligands.28 In structural 
terms, this is explained by the presence of four binding sites on 
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• Fig. 2.5 Receptor tyrosine kinases. Three of the 16 families of receptor tyrosine kinases are represented. 
All receptor tyrosine kinases possess an extracellular domain containing the ligand-binding site, a sin-
gle transmembrane domain, and an intracellular portion containing the tyrosine kinase domain. Several 
structural motifs (i.e., cysteine-rich domain, immunoglobulin-like domain, tyrosine kinase domain) in these 
receptor tyrosine kinases are indicated on the right side of the figure. Dotted lines indicate disulfide bonds. 
Cys, cysteine; EGF, epidermal growth factor; Ig, immunoglobulin; PDGF, platelet-derived growth factor.
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each holoreceptor—two of low affinity and two of high affin-
ity. Insulin initially binds to a low-affinity site before binding 
to a high-affinity site on the contralateral α/β-dimer, thus effec-
tively cross-linking the two halves of the receptor such that the 
stoichiometry of this high-affinity complex is one insulin mol-
ecule per insulin receptor. This stable structure prevents bind-
ing of hormone to the second high-affinity site. This structural 
organization for binding is largely conserved in the association 
of IGF1 with its receptor.29 Other classes of RTKs use alterna-
tive strategies for ligand binding. For example, activation of the 
EGF receptor appears to require binding of one EGF molecule 
to the outer surface of one of two noncovalently associated EGF  
receptors,30,31 while PDGF binds as a dimer to two noncovalently  
associated PDGF receptors.32

In general, activation of RTKs requires the formation of a 
receptor dimer. In some cases, such as the insulin, IGF1, FGF, 
and EGF receptors, the unbound receptors appear to consist 
of preformed dimers. In other cases, bivalent ligand binding to 
two receptor monomers is thought to promote dimer formation. 
Examples of receptors thought to act this way include the recep-
tors for PDGF, vascular endothelial growth factor, and nerve 
growth factor.

Because some of the RTK receptors exist as a dimer in the 
basal state, it is clear that dimerization alone is not sufficient to 
activate RTKs; there must also be some fundamental change in 

the interaction between the two halves of the receptor. In the 
case of the insulin and IGF1 receptors, the extracellular por-
tions of the unbound receptor exist in an inverted V conforma-
tion formed by the α-subunits and part of the β-subunits.33 The 
base is continuous with and anchored by the transmembrane 
domains of the β-subunits. Insulin or IGF1 binding to its low-
affinity site removes a brake on a molecular hinge, allowing the 
V to close and bring the transmembrane domains closer to each 
other34,35 (see Fig. 2.6). This conformational change is trans-
mitted to the cytoplasmic domains, where it has the effect of 
bringing the two kinase domains into closer proximity. In the 
unbound state, each kinase domain is inactive due to an intra-
molecular peptide, the activation loop, which is buried in the cat-
alytic cleft and sterically hinders entry of substrates.36 When the 
two cytoplasmic portions of the receptor domains are brought 
sufficiently close together, the kinase domain of one β-subunit 
phosphorylates the other on a cluster of tyrosine residues in 
the activation loop, forcing the loop out of the catalytic cleft, 
thus activating the kinase domain.37 This is possible because 
of the kinetic nature of the receptor’s inactive state, in which 
the catalytic site is always alternating between open and closed 
conformations, though in the basal state the activation loop is 
inaccessible most of the time. However, when the contralateral 
kinase domain is brought sufficiently close, it can phosphorylate 
the activation loop during the brief period it is in the extended 
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position, converting this to the more stable conformation. In 
this way, phosphorylation of one-half of the receptor increases 
its kinase activity, allowing the kinase in that half of the receptor 
to phosphorylate the activation loop in the other half and, ulti-
mately, exogenous substrates.38 Proximity-driven phosphoryla-
tion and activation of one monomer by the other are common 
features of RTK activation, but the precise strategies utilized 
to achieve this vary. Thus, although the active conformations 
of all tyrosine protein kinases are similar, the configurations of 
the inactive states differ enormously. An exception to the rule 
of activation by transphosphorylation is provided by the EGF 
receptor, in which activation depends on allosteric regulation 
of the kinase domain of one monomer by the other monomer, 
once again brought about by a conformational change bring-
ing the two domains into adjacency. The critical interaction is 
between the C lobe of the activator kinase and the N lobe of 
the receiver kinase, which disrupts an autoinhibitory interaction 
present in the inactive monomer.39 

Signaling by Receptor Tyrosine Protein Kinases
Because the insulin receptor is an enzyme with catalytic activity 
residing on the cytoplasmic surface of the plasma membrane, it 
stands to reason that it would transmit its signal by phosphory-
lating protein substrates within the cell. Nonetheless, though 
autophosphorylation sites within and outside the cytoplasmic 
kinase domain of the β-subunit have been long recognized, it 
proved difficult to identify robust, physiologically significant 
phosphorylation of tyrosine residues in other proteins. This 
seeming paradox is partially explained by the underlying mecha-
nism of activation of signaling pathways by RTKs, which signal 
by recruiting a variety of signaling proteins to the different phos-
phorylated tyrosines in the receptor. These signaling proteins 
contain motifs such as the Src homology 2 (SH2) domain and 
the phosphotyrosine binding (PTB) domain that bind to phos-
phorylated tyrosines in specific contexts. In the case of the SH2 
domain, a phosphorylated tyrosine residue in concert with some 
amino acids C-terminal to the phosphotyrosine serves as the 
binding interface for SH2 domains and therefore provides much 
of the specificity of the interaction.40 For example, after PDGF 
binds to its receptor, autophosphorylation of tyrosines within the 
PDGF receptor in a context defined by the sequence tyrosine–
methionine–any amino acid–methionine (YMXM) generates a 
binding site for the SH2 domains of the regulatory subunit of 
PI3K.41 PI3K comprises a regulatory subunit that contains two 
SH2 domains in tandem and a catalytic subunit. Recruitment of 
PI3K to a phosphorylated receptor present in the plasma mem-
brane both activates PI3K and brings the PI3K into proximity 
to its major physiologic substrate, the lipid phosphatidylinositol 
4,5-bisphosphate (PI4,5P2), which resides on the inner surface 
of the plasma membrane. PI3K phosphorylates PI4,5P2 on the 
3′-position of its inositol ring, generating phosphatidylinositol 
3,4,5-trisphosphate (PIP3), a potent signaling molecule by virtue 
of its ability to recruit protein kinases and other signaling mol-
ecules to the membrane. This illustrates an important principle 
governing RTK signaling: The initiation of intracellular events is 
often driven primarily by the spatial relationship of proteins and 
lipids rather than changes in the specific activity of assembled 
components. Although in some cases the hormone-bound recep-
tor will modulate the activity of target protein by phosphory-
lation, the more important event is often the establishment of 
adjacency between two or more critical signaling molecules, such 

as PI3K and its substrate, PI4,5P2. An additional example of this 
signaling mechanism is provided by activation of another proto-
oncogene, c-Ras. In this case, signaling is initiated by recruit-
ment of the adapter protein SH2 domain-containing protein 
(SHC) or growth factor receptor-bound protein 2 (GRB2) via 
their SH2 and/or PTB domain. When SHC is recruited, it is in 
turn tyrosyl phosphorylated by the RTK, enabling it to recruit 
GRB2 via its SH2 domain. GRB2 contains two Src homology 
3 (SH3) domains that remain constitutively bound to a poly-
proline sequence in the son of sevenless (SOS) protein, which is 
thus, in turn, carried to the plasma membrane.42,43 Association 
of SOS with the plasma membrane is necessary and sufficient 
for activation of the small G protein Ras.44 SOS is a guanine 
nucleotide exchange factor (GEF) protein that activates Ras by 
catalyzing the removal of GDP from inactive Ras to allow bind-
ing of GTP. As noted earlier, the critical event that determines the 
activity of Ras is the positioning of SOS in proximity to Ras.45,46

The insulin and IGF1 receptors signal using a variation of the 
strategy described previously for the PDGF receptor (Fig. 2.7). 
Rather than assembling a signaling complex on the cytoplasmic 
domain of the receptor, they assemble the complex on members 
of a family of scaffolds called insulin receptor substrate (IRS) pro-
teins.47 There are at least three members of this family in humans, 
but IRS1 and IRS2 are thought to be the most important to physi-
ologic signaling by insulin and IGF1. Like other members of the 
group, IRS1 and IRS2 lack intrinsic enzymatic activity; they serve 
solely as docking proteins to bring signaling molecules together 
into a multimeric complex. IRS1 and IRS2 are heavily tyrosine 
phosphorylated by activated insulin receptor, generating binding 
sites for the SH2 domains of PI3K, GRB2, and the phosphotyro-
sine phosphatase SHP2. A pleckstrin homology (PH) domain and 
PTB domain located at the N-terminus of IRS1/2 are instrumental 
in bringing the protein to the receptor.48 Upon ligand engagement 
of the insulin or IGF1 receptor, IRS1/2 is rapidly phosphorylated 
on tyrosine residues and more slowly on serine/threonine residues, 
the latter by a number of cytoplasmic kinases, including protein 
kinase C (PKC), c-Jun N-terminal kinase (JNK), and pp70 S6 
protein kinase. Serine/threonine phosphorylation of IRS proteins 
provides a strong negative feedback signal as it is thought to block 
further tyrosine phosphorylation and in some cases induces deg-
radation of the protein.

There is some evidence that the insulin receptor is capable of 
signaling through scaffolds other than the IRS proteins, though 
the physiologic significance of these pathways remains unclear. 
The insulin receptor recruits SHC to a phosphotyrosine motif 
via SHC’s PTB domain and phosphorylates SHC to generate a 
docking site for the SH2 domain of GRB2; this leads to activa-
tion of Ras as described earlier.49 GRB10, and most likely its close 
relative GRB14, is an SH2 domain–containing protein that binds 
to the insulin receptor with high affinity.50 However, unlike the 
IRS proteins, GRB10 binds to the three phosphorylated tyro-
sine residues in the activation loop and blocks the activity of the 
insulin receptor, inhibiting the insulin-dependent production of 
PIP3.51 GRB10 is stabilized via phosphorylation by mammalian 
(mechanistic) target of rapamycin complex 1 (mTORC1), itself 
activated downstream of insulin, providing another form of nega-
tive feedback.52,53 Disruption of GRB10 in mice yields embry-
onic overgrowth, consistent with its role as a negative regulator 
of IGF1 signaling.54 Both SH2B1 and SH2B2 (formerly known 
as APS) bind directly to the phosphorylated insulin receptor and 
both enhance the actions of insulin in vivo. However, while insu-
lin sensitivity is decreased in SH2B1-deficient mice, consistent 
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with SH2B1 enhancing the actions of insulin, insulin sensitivity is 
modestly increased in SH2B2-deficient mice, suggesting that the 
SH2B2 gene product(s) may negatively regulate insulin sensitivity 
in animals.51 

Receptor Serine/Threonine Protein Kinases
One of the more interesting variants on signaling by intracellular 
protein kinases is provided by a class of integral membrane recep-
tors possessing intrinsic serine/threonine protein kinase activ-
ity. Ligands for these receptors are members of the transforming 
growth factor-β (TGFβ) family of first messengers. These 42 ago-
nists encoded in the human genome can be classified into distinct 
groups typified by TGFβ itself, activin, inhibin, bone morpho-
genetic protein (BMP)/growth and differentiation factor (GDF), 
nodal, myostatin, and antimüllerian hormone. Each ligand is 
composed of a dimer of two peptides joined by hydrophobic 
interactions and often disulfide bonds. The hormone inhibin was 
isolated as an activity produced by gonadal tissue that blocks the 
secretion of follicle-stimulating hormone (FSH) from the pitu-
itary.55 Like other members of the TGFβ family, it is composed of 
two chains, an α-subunit and one of two related β-subunits. The 
hormone activin, which promotes the release of FSH, is formed 

by the assembly of homodimers of the β-subunit.56 Like inhibin, 
activin was originally identified as a product of the gonads but is 
now known to be secreted by many tissues and to function in an 
autocrine or paracrine manner as well. The first indication that the 
TGFβ family of ligands exerts its actions via membrane protein 
kinases arose from the cloning of a complementary DNA encod-
ing the activin receptor and recognition of a canonical kinase 
domain.57 Like all receptors for ligands in the TGFβ superfamily, 
the activin receptor is composed of four transmembrane glycopro-
teins, two type 1 receptors and two type 2 receptors. Type 1 and 
2 receptors have a similar primary structure, the major difference 
being an insertion of a conserved 30–amino acid sequence rich 
in glycine and serine (the GS domain) in the type 1 cytoplasmic 
domain preceding the kinase domain, which binds the immu-
nophilin FKBP12. Activin interacts initially with type 2 recep-
tors, which brings the type 1 and type 2 receptors into proximity 
so that the type 2 receptors can phosphorylate the GS domain of 
the partner type 1 receptors. This alleviates steric hindrance of the 
type 1 receptor kinase catalytic site and releases FKBP12, the two 
changes working in concert to activate the type 1 receptors, which 
allows the receptors to phosphorylate target substrates.58 Inhibin 
exerts its inhibitory action by recruiting the transmembrane gly-
coprotein betaglycan (also called the type III receptor) to form a 
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stable complex with type 2 receptors, thus sequestering them and 
preventing activation of the partner type 1 receptors.59

The major intracellular signaling mechanism utilized by all 
members of the TGFβ family involves SMAD proteins, which 
function as the major substrates for type I receptors (Fig. 2.8). 
There are eight human genes coding for SMAD proteins. Five 
of the human SMAD proteins, termed the receptor regulated 
SMADs or R-SMADs (SMADs 1, 2, 3, 5, and 8/9), contain a 
Ser-X-Ser phosphorylation site at their C-terminal tail and serve as 
substrates for the type I receptors. The activin receptor phosphory-
lates SMAD3 (and possibly SMAD2). Two R-SMADs then form a 
trimer with the common partner SMAD or co-SMAD (SMAD4) 
and are transported to the nucleus.60 It is likely that other SMAD 
isoforms contribute to activin regulation of gene expression 
in vivo in a tissue-specific manner. Upon import into the nucleus, 
SMAD proteins are modified at their so-called linker domains 
by a complex set of phosphorylation events that serve both to 
enhance binding of SMAD proteins to transcriptional regulatory 
proteins and to target SMAD proteins for ubiquitin-dependent 
proteasomal degradation. SMAD proteins bind directly to DNA 
through a conserved N-terminal domain and interact with other 
transcription factors, which, in concert with the SMAD proteins, 
exert control over a transcriptional network defined by the cell 
type and activating ligand. A third class of SMADs, the inhibitory 
or I-SMADs (SMADs 6 and 7), can bind to the activated receptor 
and promote ubiquitination and degradation of the receptor.

One particularly interesting member of the TGFβ family is 
the hormone myostatin, formerly known as GDF8. Myostatin 
is secreted by skeletal muscle and negatively regulates muscle 
growth through binding to a type II (ActR-IIB) receptor and type 

1 receptors (ALK4 and ALK5), which phosphorylate SMAD2 
and SMAD3.61 A deficiency of myostatin is responsible for the 
“double-muscled” phenotype of Belgian Blue and Piedmontese 
cattle, and deletion of its gene in mice and humans leads to mas-
sive muscle hypertrophy and hyperplasia.62 

Signaling by Receptors That Associate With 
Enzymes
Another mode of signal transduction across the plasma membrane 
is provided by receptors that possess no intrinsic catalytic activity 
but that associate with a cytoplasmic, non–membrane-spanning 
tyrosine kinase. The best example of this is the family of class I 
and class II cytokine receptors, which are type 1 transmembrane 
proteins with the N-terminus on the outside of the cell and a 
cytoplasmic C-terminus (Fig. 2.9). As for RTKs, dimerization or 
higher order oligomerization appears important for activation of 
the receptor. In many cases, including the GH receptor, a single 
ligand molecule contains two distinct recognition sequences. The 
initial binding is to a high-affinity site, which is followed by a sec-
ond lower affinity association with a site located on a second, asso-
ciated monomer. The two monomers that compose the activated 
receptor make significant contact with each other, again in the 
exofacial domain close to where the receptor inserts in the mem-
brane. For GH, prolactin, leptin, thrombopoietin, and erythro-
poietin (EPO), the receptor is a homodimer with two identical 
subunits. However, for some cytokines, the receptors consist of a 
ligand-specific monomer and one or more transmembrane chains 
shared with other cytokine receptors (see Fig. 2.9). For example, 
the interleukin 2 (IL2) receptor consists of an IL2 receptor–specific 
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subunit (IR2Rα), a second subunit shared with the IL15 receptor 
(IL2Rβ), and a γc subunit that is shared with the receptors for 
IL4, IL7, IL9, and IL15. The IL6 receptor has a unique subunit 
but shares a glycoprotein 130 (GP130) subunit with at least five 
other receptors. As with RTKs, oligomerization appears impor-
tant for activation of these receptors, as indicated by the observa-
tion that bivalent, but not monovalent, antibodies are capable of 
activating the receptors. However, also like RTKs, dimerization 
alone is insufficient to activate this class of receptors. This was 
recognized when the EPO receptor and subsequently the GH and 
prolactin receptors were examined in situ and found to exist as 
preformed dimers even in the unbound state.63 The importance 
of dimerization of the GH receptor is illustrated by the effective-
ness of the GH antagonist pegvisomant in treating acromegaly, a 
disease of excess GH secretion. Pegvisomant competes with native 
GH for its receptor and prevents functional dimerization.64

Proximal to the membrane on the inside of the cell, the class 
I and class II cytokine receptors have a conserved sequence that 
is critical to binding a protein tyrosine kinase of the JAK family. 
There are four members of this family: JAK1, JAK2, JAK3, and 
tyrosine kinase 2 (TYK2), with JAK3 largely restricted to cells of 
the hematopoietic lineage.65 For those receptors that function as 
homodimers, JAK2 is the predominant isoform involved in sig-
naling. Cytokine receptors that function as heterodimers or higher 
order oligomers tend to bind more than one JAK family member. 
For example, the IFNγR1 subunit of the IFNγ receptor binds 
JAK1 and the IFNγR2 subunit binds JAK2, while the IL2 recep-
tor recruits JAK1 to the IL2Rβ subunit and JAK3 to the γc sub-
unit (see Fig. 2.9). The JAK proteins associate with a cytoplasmic, 
juxtamembrane portion of the cytokine receptors via a conserved, 
N-terminal domain structure called the FERM domain (named 
for its presence in Band 4.1 protein, ezrin, radixin, and moesin).66 
The carboxy half of JAK consists of two homologous regions in 
tandem, a pseudokinase domain followed by a kinase domain. The 
former has many of the conserved sequences that define a protein 
kinase, but it also has mutations of amino acids that are essential 

for catalytic activity. It is believed that in the non–ligand-bound 
receptor, the intracellular portions of two monomers are arranged 
in a way such that each pseudokinase domain binds to and sup-
presses the catalytic activity of the kinase on the other subunit, 
and vice versa. Binding of GH to its receptor results in a con-
formational change in the extracellular domain of the receptor, 
which induces a motion intracellularly like the opening of scissors, 
causing sliding of the two subunits of JAK in opposite directions. 
This relieves the allosteric inhibition of the kinases67,68 (Fig. 2.10).

The major consequence of releasing the block to GH receptor-
associated JAK2 activity is the JAK2-catalyzed transphosphory-
lation of the contralateral receptor subunit and its associated 
JAK2.65 This allows binding of the SH2 and/or PTB domains of 
a number of signaling molecules, including IRS1/2 and PLCγ, 
thus recruiting them to the receptor and plasma membrane.69 
However, more important than these to the actions of GH on 
growth are members of the signal transducers and activators of the 
transcription (STAT) family (Fig. 2.11). The GH receptor binds 
a number of STAT family members, but STAT5b is most critical 
to its growth-promoting actions. There are seven STAT proteins 
with a shared domain structure. The N-termini are composed of 
four helical coils that function in binding to other proteins, fol-
lowed by a DNA-binding domain (DBD).70 The carboxy half of 
the proteins consists of a linker region, an SH2 domain, and a 
transcriptional transactivation domain. Several of the tyrosine res-
idues in the GH receptor that undergo phosphorylation by JAK2 
in response to ligand binding serve as docking sites for STAT5b. 
Once recruited to the receptor, STAT5b is itself phosphorylated, 
resulting in dimerization, with each STAT5b protein binding via 
its phosphorylated tyrosine to its partner’s SH2 domain. At the 
same time, STAT5b dissociates from the receptor and translo-
cates into the nucleus where it can regulate gene transcription. In 
addition to this basic pathway, there are numerous other layers of 
regulation. Serine/threonine protein kinases such as members of 
the MAPK and PKC families also phosphorylate STAT proteins; 
in some cases, this latter phosphorylation is required for maximal 
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transcriptional activation. Using a different mechanism, SH2B1 
binds to and enhances JAK2 activity.69,71 STAT proteins can also 
heterodimerize with other STAT proteins or other transcription 
factors. For example, STAT5b has been shown to dimerize with 
the glucocorticoid receptor, with the latter acting as a coactivator 
for STAT5b to promote expression of GH-regulated genes (e.g., 
IGF1) implicated in body growth.72

Another important hormone that uses the JAK/STAT signaling 
pathway is leptin. Leptin is secreted by adipocytes; it acts on the 
arcuate nucleus of the hypothalamus as well as other regions in the 
brain to suppress appetite and, in rodents, increase metabolic rate. 
Humans deficient in leptin display massive obesity early in life.73 
Like GH, leptin binds to homodimers of a class I cytokine recep-
tor and activates JAK2.74 However, in contrast to the GH recep-
tor, the leptin receptor recruits STAT3 as its primary signaling 
molecule, which binds to phosphotyrosines in a YXXQ motif. The 
phosphorylated leptin receptor also binds STAT5 and the SH2-
containing protein tyrosine phosphatase 2 (SHP2; PTPN11). The 
latter is thought to act as a positive signaling module by mediat-
ing the first step in the activation of the ERK cascade.75 On the 
other hand, the tyrosine phosphatase PTP1B dephosphorylates 
the leptin receptor and inhibits leptin action, and thus its deletion 
in mouse brain leads to obesity and insulin resistance.76 JAK2 also 
phosphorylates IRS proteins, thereby engaging the PI3K pathway. 
The roles of the different signaling pathways activated down-
stream of leptin and JAK2 have been investigated using mice in 
which specific tyrosine residues in the receptor have been mutated. 
Replacement of tyrosine 1138 by serine completely blocks recruit-
ment of STAT3, generating mice similar in their degree of obesity 
to those lacking leptin receptors, showing that STAT3 signaling 
is critical to the regulation of appetite and energy metabolism.77

Termination of class I cytokine signaling occurs in response to 
dephosphorylation of key phosphotyrosines; it is also promoted 
by the transcriptional induction of the suppressors of cytokine sig-
naling, or SOCS proteins. The eight members of the SOCS family 
are direct targets of the STAT transcription factors and provide 
a potent negative feedback signal by binding to phosphorylated 
tyrosines in the receptors via the SOCS SH2 domain. Upon inter-
acting with the receptors, SOCS proteins inhibit their action by 
reducing JAK activity, by competing for binding of other signaling 
molecules, and/or by inducing the degradation of receptor via the 
ubiquitin pathway due to the conserved SOCS box located at the 
C-terminus of the protein.78 Mice deficient for SOCS2 appear 
normal when young but after weaning grow substantially larger  
than their wild-type littermates, consistent with enhanced GH 
signaling.79 Cytokine signaling via STAT proteins can also be 
downregulated by members of the protein inhibitor of activated 
STAT (PIAS) family, which have been shown to regulate transcrip-
tion through several mechanisms, including blocking the DNA-
binding activity of transcription factors, recruiting transcriptional 
corepressors, and promoting protein sumoylation. 

Coupling of Cell Surface Receptors to  
Intracellular Signaling

Downstream Signaling by Cyclic Adenosine 
Monophosphate
For the many hormones that bind exclusively to the outer surface 
of cells to carry out their actions, there must be some means of 
translating the extracellular signal into an intracellular response. 

The first example of a transduction system that was understood 
in some detail derived from investigating one of the key features 
of the fight-or-flight response, the mobilization of stored carbo-
hydrate in the liver. The physiologic response to stress requires a 
supply of readily consumable energy, best provided in the form of 
blood glucose, which is stored as polysaccharide glycogen primar-
ily in the liver. β-Adrenergic stimulation of hepatocytes by epi-
nephrine leads rapidly to the hydrolysis of glycogen and the release 
of free sugar; glucagon also stimulates the breakdown of hepatic 
glycogen. The mechanism used to transmit this response is the 
prototypical example of a second messenger system, in which the 
agonist that interacts with the outside of the cell, in this case glu-
cagon or epinephrine, is considered a first messenger, and a soluble, 
intracellular signaling molecule generated by hormone-receptor 
association is called a second messenger.80 For hepatic glycogen 
breakdown in response to glucagon or β-adrenergic agents, the 
second messenger is cAMP, which is produced by a plasma mem-
brane enzyme, adenylyl cyclase, from ATP (Fig. 2.12). Adenylyl 
cyclase is a direct target of GαS, which becomes GTP loaded and 
active in response to receptor occupancy.

The scope and diversity of hormones and other extracellular 
signals that activate adenylyl cyclase and increase the level of intra-
cellular cAMP are remarkably extensive. Included in the long list 
of hormones that signal through this mechanism are β-adrenergic 
agents, glycoprotein hormones such as TSH, glucagon, adreno-
corticotropic hormone (ACTH), hypothalamic hormones, and 
antidiuretic hormone. Moreover, the range of physiologic and 
biochemical events modulated by cAMP is equally vast. Thus, 
although the second messenger cAMP defines a commonly used 
mechanism for transducing signals from extracellular hormones, it 
also presents another problem in signaling: How do cells maintain 
selectivity in the way they respond to a given hormone? Much of 
this is accomplished by the subcellular compartmentalization of 
signaling complexes. A-kinase anchoring proteins (AKAPs), which 
are scaffolds localized to distinct intracellular sites, bind a number 
of proteins that modulate the actions of cAMP, including degrad-
ing enzymes and target kinases.81 The regulated assembly of higher 
order structures confers a spatiotemporal resolution to cAMP sig-
naling that can allow multiple biologic responses to exist within 
the same cell. For example, β-adrenergic agents and prostaglandin 
E1 both act on the heart through elevations in cAMP, but each reg-
ulates a different cardiac function. This is accomplished through 
stimulation of distinct populations of cAMP target kinases, such 
that β-adrenergic agents are more potent than prostaglandins in 
their effects on the particulate fractions of the heart cell.82 It is 
likely that AKAPs confer this specificity to the cardiomyocyte.

cAMP is degraded to AMP and phosphate by a specific PDE, 
and the balance between synthesis and degradation of cAMP 
determines the levels of the cyclic nucleotide. Although hormones 
generally use adenylyl cyclase as the means for modulating cAMP 
levels within the cell, the PDEs provide an additional site of reg-
ulation.83 The cyclic nucleotide PDEs are a large and complex 
family of enzymes, whose diversity in both tissue and subcellular 
localization has made them favorite targets for the development of 
therapeutics. Caffeine and theophylline were two of the first drugs 
recognized to be inhibitors of PDE, but more recently, selective 
inhibitors of PDE5, an enzyme that degrades cyclic guanosine 
monophosphate (cGMP), have been widely used for the treat-
ment of erectile dysfunction. In addition, PDE inhibitors are 
either currently being used or are in development for the treat-
ment of a wide variety of diseases, including asthma, neurologic 
diseases, and pulmonary hypertension.
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Glycogen metabolism in liver and muscle provided the initial 
example of a common mode of signaling initiated by second mes-
sengers—activation of a cascade of intracellular protein kinases. 
Signal transduction by protein phosphorylation stands as one of 
the most critical regulatory mechanisms in biology. The state of a 
phosphoprotein is regulated dynamically, determined by the rela-
tive rates of phosphorylation and dephosphorylation by protein 
kinases and phosphatases, respectively. In most cases, the turnover 
of the phosphate is rapid, allowing regulation by either the kinase 
or phosphatase, or in many instances both coordinately. Numer-
ous endocrine signals exert control over intracellular metabolism, 
growth, and other functions via modulation of protein kinase 
activity. Originally, protein kinases were found to phosphorylate 
proteins on serine and threonine residues, but, as described ear-
lier, tyrosine phosphorylation has emerged as another mode of 
signaling.

One advantage of such series of kinases is signal amplifica-
tion. Amplification occurs because each individual kinase mol-
ecule can modify many downstream target proteins. When these 
downstream targets are also kinases that become activated upon 
phosphorylation, each one of them can in turn modify and acti-
vate many more proteins. In the case of cAMP-initiated signal-
ing, one receptor:ligand pair creates multiple cAMP molecules. 
The multiple cAMP molecules activate the serine/threonine kinase 
protein kinase A (PKA), which in turn phosphorylates multiple 
downstream effector proteins. In the case of glycogen metabolism, 
PKA phosphorylates and activates glycogen phosphorylase kinase, 
which in turn phosphorylates and activates glycogen phosphory-
lase, which releases glucose-1-P from glycogen. In muscle, phos-
phorylase kinase is also stimulated by calcium, which is released 

from the sarcoplasmic reticulum during electrical stimulation 
and contraction. The mechanism by which cAMP activates PKA 
illustrates another theme in signal transduction: displacement or 
dissociation of intramolecular pseudosubstrates or substrates as 
a means to activate protein kinases, a mechanism also used by 
such protein kinases as PKC and myosin light chain kinase. cAMP 
binds to the two regulatory subunits of the heterotetrameric PKA, 
which causes them to dissociate from two catalytic subunits. A 
domain in the regulatory subunit resembles a PKA phosphoryla-
tion sequence but with the critical serine replaced by an alanine, 
which lacks the hydroxyl group required for transfer of the phos-
phate from ATP. When PKA is assembled into a heterotetramer of 
two regulatory subunits and two catalytic subunits, this pseudo-
substrate interacts with the catalytic subunit, preventing it from 
phosphorylating target proteins.84

In addition to enhancing glycogen breakdown, PKA mediates 
the effects of a number of hormones in various tissues, including 
the positive inotropic and chronotropic effects of epinephrine on 
the heart, the trophic effects of the anterior pituitary hormones 
TSH and ACTH, and the effects of antidiuretic hormone on the 
permeability of the renal collecting duct to water. PKA also trans-
locates into the nucleus to regulate gene transcription.85 The best 
studied nuclear target of PKA is the cAMP-response element–
binding protein (CREB), though it is still not clear how many 
of the physiologic actions of cAMP require this transcription fac-
tor to be phosphorylated. PKA also phosphorylates a number of 
coregulatory proteins, which also contribute to transcriptional 
outputs.

Importantly, cAMP also has actions that are independent 
of PKA. One of these is the direct regulation of ion channels; 
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another involves the exchange protein activated by cAMP 
(EPAC), which functions as a guanine nucleotide exchange fac-
tor (GEF) for the small GTP-binding protein Rap1.86 Regulation 
of insulin secretion from pancreatic beta cells by glucagon-like 
peptide-1 (GLP1) and stabilization of the endothelial barrier by 
β-adrenergic agents are two processes thought to be mediated by 
EPAC. 

Regulation by the Second Messengers Calcium 
and PKC
Many additional second messengers have been identified since 
the discovery of cAMP. These include calcium, cGMP, inosi-
tol polyphosphates, DAG, and nitric oxide. The calcium ion 
(Ca2+) is one of the most common second messengers utilized 
by diverse cell types, and one that plays a particularly impor-
tant role in the regulated secretion of hormones.87 Ca2+ is 
maintained at low micromolar concentrations in the cytoplasm 
such that opening channels that lead to the outside of the cell 
or intracellular storage organelles results in a rapid increase in 
cytosolic Ca2+. The heterotrimeric G proteins containing Gαq 
or Gα11 cause increases in intracellular calcium by targeting the 
membrane-associated enzyme PLC. PLC catalyzes the hydro-
lysis of phosphatidylinositol 4’,5’-bisphosphate into DAG and 
IP3. Hormones that signal through G protein–dependent acti-
vation of PLC include angiotensin II, α-adrenergic catechol-
amines, growth hormone–releasing hormone (GHRH), and 
vasopressin. IP3 binds to a receptor located on the cytoplas-
mic face of the endoplasmic reticulum, leading to the release 
of stored Ca2+ from that organelle. Ca2+ also interacts with the 
IP3 receptor, further stimulating calcium discharge from the 
endoplasmic reticulum and providing a strong positive feed-
back loop. Another source of cytoplasmic Ca2+ is entry through 
receptor-operated channels in the plasma membrane, such as 
those activated by noradrenaline, endothelin, or histamine via 
heterotrimeric G proteins.

Ca2+ transmits its signal via a number of effectors, including 
protein kinases, in most cases through the intermediary bind-
ing protein, calmodulin, or its relative, troponin C. Calmodulin 

is a small, acidic protein that contains four copies of a canoni-
cal calcium-binding motif.88 Calmodulin associates with and 
regulates in a Ca2+-dependent manner glycogen phosphorylase 
kinase, myosin light chain kinase, and members of the family 
of calcium/calmodulin-dependent kinases. In addition to protein 
kinases, other calcium/calmodulin-dependent enzymes include 
the serine/threonine protein phosphatase, calcineurin, some 
adenylate cyclase and PDE isoforms, and nitric oxide synthase. 
Calcium interacts directly and independently of calmodulin with 
targets such as the protease calpain, synaptotagmin (a regulator 
of neurotransmitter and hormone exocytosis), and cytoskeletal 
proteins.

An important group of protein kinases directly activated by 
calcium is the PKC family. PKC, originally identified as the target 
of the tumor promoter phorbol ester, is a cyclic nucleotide-inde-
pendent protein kinase regulated by the direct binding of DAG 
and calcium, two second messengers produced by the activation 
of PLC. The PKC family has been divided into three groups: clas-
sic (regulated by DAG, phosphatidylserine, and calcium), novel 
(regulated by DAG and phosphatidylserine), and atypical. All 
PKC proteins have a conserved kinase domain in their C-terminal 
portion and regulatory sequences in their N-terminal domain. For 
classic PKCs, the latter consist of a C1 domain, which binds DAG 
or phorbol ester, followed by a C2 domain, which associates with 
anionic lipids in a Ca2+-dependent manner89 (Fig. 2.13). Novel 
isoforms have a modified form of the C1 domain that confers 
a higher affinity for DAG than in the classic isoforms but lack 
the C2 domain, explaining the absence of Ca2+ regulation. Atypi-
cal PKCs have alterations in the C1 domain that eliminate DAG 
binding and also lack a site for Ca2+ binding. The regulation of 
PKC isoforms is complex, involving such covalent modifications 
as phosphorylation and proteolysis, as well as interaction with lip-
ids and hydrophilic molecules other than those traditionally asso-
ciated with activation of classic PKCs.90 

Regulation of Protein Kinases by PI3K
Another important signaling pathway involves a family of related 
proteins that catalyzes phosphorylation of phosphoinositides on 

C1B C2C1A
Pseudosubstrate

Isoenzyme Regulatory Catalytic Ligand

Conventional:
α, βI, βII, γ

Activation
loop

Turn
motif

Hydrophobic motif
novel C2 C1A C1B

Novel:
δ, ε, θ, η

PB1 atypical C1
Atypical:
ζ, ι/λ

+

DAG

++

–

+

Ca2+

–

–

+++

Phorbol
esters

+++

–

• Fig. 2.13 Domain structure and ligands of protein kinase C (PKC). The PKC family can be divided into 
three classes: the conventional, or classic, PKCs (cPKCs); the novel PKCs (nPKCs); and the atypical PKCs 
(aPKCs). The C1 domains bind diacylglycerol (DAG) or phorbol ester; the C2 domain binds calcium. A 
novel C2 domain in nPKCs does not bind calcium but mediates protein-protein interactions. Similarly, a 
PB1 domain in aPKCs is involved in protein-protein interactions. The aPKCs possess only one C1 domain 
and thus do not bind diacylglycerol. The conserved pseudosubstrate motif is represented by the white 
boxes in the regulatory domain. The activation loop and the turn and hydrophobic motifs are sites of 
regulatory phosphorylation.



30 SECTION I  Hormones and Hormone Action

the 3′ position of the inositol ring.91 All class I PI3Ks are com-
prised of a catalytic protein associated with a regulatory subunit 
and use PI4,5P2 as a preferred substrate; these isoforms are most 
important to signaling by RTK, GPCRs, and tyrosine kinase 
oncogenes. Class II PI3Ks phosphorylate PI and PI4P in vivo 
and lack stable regulatory subunits but probably associate with 
other proteins as modulating factors. They have been impli-
cated in a diverse set of physiologic responses, but the down-
stream targets are largely unknown. Class III PI3K, which has 
one catalytic member also known as vacuolar protein sorting 
34 (Vps34), binds tightly to the regulatory protein Vps15, uses 
exclusively PI as a substrate, and is involved primarily in mem-
brane protein trafficking related to endocytosis, phagocytosis, 
and autophagy.

Class IA PI3Ks are defined by regulatory subunits containing 
SH2 domains, which target them to activated RTKs. The hetero-
trimeric G protein subunit pair Gβγ, when free, activates those 
class I PI3Ks containing regulatory subunits not bearing SH2 
domains.

Class IA PI3Ks are thought to be the most important PI3Ks 
for the actions of hormones, particularly insulin and IGF1.92 
Activation of the receptors for either hormone leads to phos-
phorylation of IRS1 or IRS2 at sites specialized for docking with 
SH2 domains in the p85 regulatory subunit associated with the 
p110α catalytic subunit of PI3K. The bound PI3K catalyzes the 
production of PIP3 and possibly PI3,4P2, which serve to recruit 
additional proteins (including protein kinases) to the membrane 
by binding their PH domains.93 PH domains are best known 
for their ability to bind phosphoinositides with high affinity and 
specificity, although only a small portion have been proven to do 
so. The serine/threonine protein kinase Akt, also named protein 
kinase B because of its structural similarities to PKA and PKC, 
contains an N-terminal PH domain that preferentially binds to 
PIP3 and PI3,4P2.94 When insulin acts upon a target cell, the PH 
domain of Akt associates with the PIP3 generated on the cyto-
plasmic face of the plasma membrane. The binding of the PH 

domain to PIP3 serves two purposes: to recruit Akt to the mem-
brane and to relieve steric hindrance of Akt’s phosphorylation sites 
and catalytic domain by the PH domain. Also at the plasma mem-
brane via its own PH domain is the enzyme 3-phosphoinositide-
dependent protein kinase (PDK1), which phosphorylates Akt on 
a threonine in its activation loop (Fig. 2.14). mTORC2 also phos-
phorylates Akt on a serine in its C-terminus. Together, the PDK1 
and mTORC2 phosphorylation events confer full activity to Akt. 
mTORC2 appears to be regulated by insulin, but the mechanism 
is unknown.

Akt is essential to many of the metabolic actions of insulin and 
growth effects of IGF1.95,96 There are three Akt isoforms, each 
encoded by separate genes. Akt1 is the most widely expressed iso-
form and seems to be critical to the regulation of growth; Akt2 is 
enriched in insulin target tissues and is more important to the control 
of metabolism; and Akt3 is expressed primarily in the brain, where 
it controls growth of that tissue.97 Indirect activation of mTORC1 
by Akt and suppression of forkhead box (FOX)O–driven transcrip-
tion are two of the critical targets for promoting organ growth, the 
Akt/mTORC1 pathway being particularly engaged in the regula-
tion of cell size.98 Members of the Rab GTPase-activating protein 
family, TBCD4 (also known as AS160) in fat cells and TBC1D1 
in both muscle and fat, are phosphorylated and inhibited by Akt, 
contributing to the activation of glucose transport.99 

Regulation of Protein Kinases by Ras
Routes to activation of Ras by GRB-SOS include both RTKs and 
GPCRs acting through β-arrestin.100 GTP-bound Ras recruits 
several receptors to the plasma membrane, including the serine/
threonine kinase Raf, which is activated by dimerization and a 
series of phosphorylation/dephosphorylation events.101 Raf then 
phosphorylates MAPK/ERK kinase (MEK1), a tyrosine and ser-
ine/threonine–dual specificity protein kinase, initiating a protein 
kinase cascade centered on extracellular signal-regulated kinases 
1 and 2 (ERK1/2). This represents one of four MAPK cascades, 
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the others involving c-Jun N-terminal kinase (JNK), the 38-kDa 
stress-activated kinases (p38), and ERK5. Specificity for MAPKs 
is conferred by scaffold proteins that bind most or all members 
of a given pathway, ensuring that each member phosphorylates 
only its appropriate target kinase.102 Gonadotropin-releasing hor-
mone, PTH, GH, angiotensin, and gastrin are just a few of the 
many hormones believed to signal at least in part through regula-
tion of MAPKs. 

Disease Caused by Defective Cell Surface 
Receptors
Numerous diseases develop as a result of dysfunctional binding to 
or signaling by hormone receptors. These hormone resistance syn-
dromes invariably mimic the phenotype of the hormone-deficient 
state but present with high levels of biologically active hormones 
in the circulation.

Insulin Resistance Syndromes
The best studied inherited disease of hormone resistance is 
that caused by mutations in the insulin receptor. In addi-
tion to hyperinsulinism and the expected abnormalities in 
metabolism, patients with severe insulin resistance also display 
acanthosis nigricans (hyperpigmentation primarily in the skin 
folds) and often hyperandrogenism.103 Beyond that, there is 
a range of syndromes that correlate with the degree of insulin 
signaling impairment. The strongest loss-of-function muta-
tions result in leprechaunism, in which there are severe devel-
opmental defects presenting at birth. Some mutations of the 
insulin receptor gene cause a decrease in the number of recep-
tors in the plasma membrane, in some cases accompanied by a 
decrease in the mRNA. Other mutations adversely affect hor-
mone binding or the function of the kinase domain.103 In con-
trast to insulin resistance caused by mutations in the receptor 
gene, sometimes referred to as type A insulin resistance, type B 
resistance presents at middle age, often with signs of autoim-
munity such as vitiligo, alopecia, and arthritis. This syndrome 
is defined by the presence of antibodies directed against the 
insulin receptor; the levels of antibody correlate with the sever-
ity of the disease.

In many ways, the use of insulin resistance to describe the 
common syndrome associated with obesity or polycystic ovary 
syndrome (PCOS) is a misnomer. The term resistance was origi-
nally coined to describe the situation of hyperglycemia in the face 
of elevated concentrations of insulin in the blood.105,106 However, 
the recognition that insulin has numerous physiologic actions in 
addition to those on carbohydrate metabolism has led to ambi-
guity in nomenclature. On the one hand, the term insulin resis-
tance is often applied to abnormalities in insulin signaling to all 
outputs from the receptor; this typically occurs with mutations 
of the insulin receptor. However, in the insulin resistance of obe-
sity or PCOS, some actions of insulin are preserved. This is dem-
onstrated by a comparison of the phenotype of individuals with 
type 2 diabetes mellitus to those with genetically encoded partial 
defects in insulin receptor function.107 Both groups share hyper-
glycemia, but only those with type A insulin resistance display 
defects in the regulation of hepatic lipid metabolism by insulin. 
Thus the metabolic phenotype associated with type A inherited 
insulin resistance is not faithfully phenocopied by the insulin 
resistance of obesity. Consistent with this, numerous pathologic 

mechanisms have been proposed to account for the insulin resis-
tance associated with obesity, almost all of which involve a “post-
receptor defect.” 

Defects in Cell Surface Receptors That Control 
Growth
One of the most clinically recognizable syndromes is resistance to 
the actions of GH, which results in shortness of stature. An inability 
to respond to GH results in Laron syndrome, characterized by high 
levels of circulating GH, very low levels of IGF1, and short stat-
ure.108 Diverse molecular causes have been reported, including large 
deletions as well as missense, frameshift, and splicing mutations 
in the GH receptor. Similar syndromes of decreased growth can 
also result from mutations in STAT5b and deficiency in IGF-1 or 
defects in IGF-1 signaling. Recently, a syndrome has been described 
in which mutations in the PIK3R1 gene, which encodes the p85α 
regulatory subunit of class I PI3K, lead to SHORT syndrome, 
which includes dysmorphic facial features and defects in growth 
(short stature, hyperextensibility, ocular depression, Rieger anom-
aly, and teething delay).109 As might be expected by the similarities 
in IGF-1 and insulin signaling, individuals with SHORT syndrome 
also display lipodystrophy and insulin resistance.110 

Diseases Caused by Mutations in GPCRs and G 
Proteins
A number of endocrine diseases can be attributed to mutations in 
the GPCR–G protein signaling system.111,112 For GPCRs, many 
mutations are associated with some degree of loss of function and 
are inherited in a recessive manner (Table 2.3). Some examples 
include hypothyroidism from mutations in the thyrotropin-
releasing hormone or TSH receptor, glucocorticoid deficiency 
from mutations in the melanocortin 2 receptor, extreme obesity 
from dysfunction of melanocortin 4 receptor, and infertility due 
to mutations in the receptor for luteinizing hormone or FSH. 
Gain-of-function mutations include those in the TSH receptor 
causing hyperthyroidism, in the α2-adrenergic receptor, leading 
to diabetes mellitus, and in the calcium-sensing receptor result-
ing in hypoparathyroidism. Somatic activating mutations have 
been reported in the luteinizing hormone and TSH receptors.111 
A limited number of heterotrimeric G proteins are known to have 
mutations that cause human disease, and in all cases they affect 
the α-subunit. Mutation of the gene encoding the Gαt subunit of 
transducin is associated with night blindness. Dominant, activat-
ing mutations of Gαs cause pituitary adenomas, most often secret-
ing GH, and more rarely, tumors of the thyroid, parathyroid, and 
adrenal glands.112 Patients who inherit a loss of a functional allele 
in Gαs develop Albright hereditary osteodystrophy (AHO); those 
who inherit the mutant allele from their mothers also have pseu-
dohypoparathyroidism type 1a in addition to AHO. This is due to 
imprinting of the Gαs gene, such that it is expressed preferentially 
from the maternal allele in a number of hormone target tissues, 
but biallelically in most other cell types. 

Ligands That Act Through Nuclear Receptors
Many signaling molecules share with thyroid and steroid hor-
mones the ability to function in the nucleus to convey intercel-
lular and environmental signals. Lipophilic signaling molecules 
that use nuclear receptors include derivatives of vitamins A and 
D, endogenous metabolites such as oxysterols and bile acids, and 
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chemicals not naturally encountered in the environment (i.e., 
xenobiotics). These molecules are referred to as nuclear receptor 
ligands. The nuclear receptors for all of these signaling molecules 
are structurally related and are collectively referred to as the nuclear 
receptor superfamily. They are all transcription factors, serving to 
activate or repress specific gene sets that mediate their physiologic 
effects. The study of these receptors is a rapidly evolving field, and 
more detailed information can be obtained by visiting the Nuclear 
Receptor Signaling Atlas website.113,114

General Features of Nuclear Receptor Ligands
Unlike polypeptide hormones that function through cell surface 
receptors, no ligands for nuclear receptors are directly encoded in 
the genome. All nuclear receptor ligands are small (molecular mass 
<1000 Da) and lipophilic, enabling them to enter cells by passive 
diffusion, although in some cases a membrane transport protein is 
involved. For example, several active and specific thyroid hormone 
transporters have been identified, including monocarboxylate 
transporter 8 (MCT8), MCT10, and organic anion transporting 
polypeptide 1C1 (OATP1C1).115

All naturally occurring nuclear receptor ligands are derived 
from dietary, environmental, or metabolic precursors. In this 
sense, the function of these ligands and their receptors is to trans-
late cues from the external and internal environments into changes 
in gene expression. Their critical role in maintaining homeostasis 
in multicellular organisms is highlighted by the fact that nuclear 

receptors are found in all vertebrates and insects but not in single-
cell organisms such as yeast.116

Because nuclear receptor ligands are lipophilic, most are readily 
absorbed from the gastrointestinal tract. This makes nuclear recep-
tors excellent targets for pharmaceutical interventions. In addition 
to natural ligands, many drugs in clinical use target nuclear recep-
tors, ranging from drugs used to treat specific hormone deficien-
cies to those used to treat common multigenic conditions such as 
inflammation, cancer, and type 2 diabetes. 

Subclasses of Nuclear Receptor Ligands
One classification of nuclear receptor ligands is outlined in Table 
2.4 and is described in the following paragraphs.

Classic Hormones
The classic hormones that use nuclear receptors for signaling are 
thyroid hormone and steroids. Endogenous steroid hormones 
include cortisol, aldosterone, estradiol, progesterone, and testos-
terone. In some cases (e.g., thyroid hormone receptor α and β 
genes [THRA and THRB], estrogen receptor α and β genes [ESR1 
and ESR2]), more than one gene exists for a given type of hor-
mone receptor. Each receptor gene may in turn encode additional 
receptors for the same hormone by alternative promoter usage or 
by alternative splicing (e.g., THRB1 and THRB2).

Some receptors mediate the signals of multiple hormones. 
For example, the mineralocorticoid receptor, also known as the 

  Diseases Caused by G Protein–Coupled 
Receptor Loss-of-Function Mutations

Receptor Disease Inheritance

V2 vasopressin Nephrogenic diabetes insipidus X-linked

ACTH Familial ACTH resistance AR

GHRH Familial GH deficiency AR

GnRH Hypogonadotropic hypogonadism AR

GPR54 Hypogonadotropic hypogonadism AR

Prokineticin 
receptor 2

Hypogonadotropic hypogonadism ADa

FSH Hypergonadotropic ovarian dysgen-
esis

AR

LH 46 XY, intersex AR

TSH Familial hypothyroidism AR

Ca2+ sensing 
receptor

Familial hypocalciuric hypercalcemia AD

Neonatal severe primary hyperpara-
thyroidism

AR

Melanocortin 4 Obesity AR

PTH/PTHrP Blomstrand chondrodysplasia AR

aWith incomplete penetrance.

ACTH, Adrenocorticotropic hormone; AD, autosomal dominant; AR, autosomal recessive; 
FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone–releasing 
hormone; GnRH, gonadotropin-releasing hormone; GPR54, orphan G protein–coupled recep-
tor 54; LH, luteinizing hormone; PTH, parathyroid hormone; PTHrP, parathyroid hormone–
related protein; TSH, thyroid-stimulating hormone.

  

TABLE 2.3   Nuclear Receptor Ligands and Their 
Receptors

Ligand Receptor

Classic Hormones
Thyroid hormone Thyroid hormone receptor (TR), subtypes α, β

Estrogen Estrogen receptor (ER), subtypes α, β

Testosterone Androgen receptor (AR)

Progesterone Progesterone receptor (PR)

Aldosterone Mineralocorticoid receptor (MR)

Cortisol Glucocorticoid receptor (GR)

Vitamins
1,25-(OH)2-vitamin D3 Vitamin D receptor (VDR)

All-trans-retinoic acid Retinoic acid receptor, subtypes α, β, γ

9-cis-retinoic acid Retinoid X receptor (RXR), subtypes α, β, γ

Metabolic Intermediates and Products
Fatty acids Peroxisome proliferator-activated receptor 

(PPAR), subtypes α, δ, γ

Oxysterols Liver X receptor (LXR), subtypes α, β

Bile acids Bile acid receptor (BAR, also called FXR)

Heme Rev-Erb subtypes α, β

Phospholipids Liver receptor homologue-1 (LRH1)
Steroidogenic factor-1 (SF1)

Xenobiotics Pregnane X receptor (PXR)
Constitutive androstane receptor (CAR)

TABLE 2.4



33Chapter 2 Principles of Hormone Action

aldosterone receptor, has equal affinity for aldosterone and cortisol 
and probably functions as a glucocorticoid receptor in some tissues, 
such as the brain.117 Likewise, the androgen receptor binds and 
responds to both testosterone and dihydrotestosterone (DHT).118 

Vitamins
Vitamins are essential constituents of a healthful diet. Two fat-
soluble vitamins, A and D, are precursors of important signaling 
molecules that function as ligands for nuclear receptors.

Precursors of vitamin D are synthesized and stored in skin 
and activated by ultraviolet light; vitamin D can also be derived 
from dietary sources. Vitamin D is then converted in the liver 
to 25(OH)D (25-hydroxyvitamin D, calcidiol), which is subse-
quently converted by the kidney to 1,25(OH)2D3 (1,25-dihy-
droxyvitamin D3, calcitriol), the most potent natural ligand of the 
vitamin D receptor (VDR).119 The 1-hydroxylation of calcidiol is 
tightly regulated, and calcitriol acts as a circulating hormone, aris-
ing in the kidney and circulating through the bloodstream to act 
on target tissues such as intestine and bone.

Vitamin A is stored in the liver and is activated by metabolism 
to all-trans-retinoic acid, which is a high-affinity ligand for retinoic 
acid receptors (RARs).120 Retinoic acid functions as a signaling 
molecule in both a paracrine and an endocrine manner. Retinoic 
acid is also converted to its 9-cis-isomer, which is a ligand for 
another nuclear receptor, the retinoid X receptor (RXR).121 These 
retinoids and their receptors are essential for normal development 
of multiple organs and tissues, and they have pharmaceutical util-
ity for conditions ranging from skin diseases to leukemia.122 

Metabolic Intermediates and Products
Certain nuclear receptors respond to naturally occurring endogenous 
metabolic products. The peroxisome proliferator-activated receptors 
(PPARs) constitute the best-defined subfamily of metabolite-sensing 
nuclear receptors.123 All three PPAR subtypes are activated by poly-
unsaturated fatty acids, and although specific lipid species may act as 
selective PPAR ligands, the PPARs may also function as integrators of 
the concentration of a number of fatty acids.124

The natural ligand for PPARα has not been clearly identi-
fied, but may be a fatty acid derived from lipolysis.125,126 The 
fibrate class of lipid-lowering pharmaceuticals are potent ligands 
for PPARα, and the very name of this receptor is derived from 
its ability to induce the proliferation of peroxisomes in the liver, 
organelles that break down very long-chain fatty acids through 
β-oxidation.127 Indeed, stimulation of fatty acid oxidation is an 
important physiologic role of PPARα.

The other PPARs (δ and γ) are structurally related to PPARα 
but do not induce proliferation of peroxisomes when activated by 
their respective ligands. PPARδ, also known as PPARβ, is ubiqui-
tous, and its ligands—other than fatty acids—are not well charac-
terized. Activation of PPARδ increases oxidative metabolism in fat 
and skeletal muscle.128 PPARγ is expressed primarily in adipocytes 
and is necessary for differentiation along the adipocyte lineage.129 
PPARγ is also expressed in other cell types, including colonic epi-
thelial cells, macrophages, and vascular endothelial cells, where it 
may play physiologic and pathologic roles. The natural ligand for 
PPARγ is not known, but PPARγ is a major tissue target of thia-
zolidinedione (TZD) antidiabetic drugs that improve insulin sen-
sitivity.130,131 These pharmaceutical agents bind to PPARγ with 
nanomolar affinities. Non-TZD PPARγ ligands are also insulin 
sensitizers, further implicating PPARγ in this physiologic role.

Another metabolite-responsive nuclear receptor, the liver 
X receptor (LXR), is activated by oxysterol intermediates in 

cholesterol biosynthesis. Mice lacking LXRα have a dramatically 
impaired ability to metabolize cholesterol.132 A related receptor 
known as farnesyl X receptor (FXR) binds and is activated by bile 
acids, and it plays a role in the regulation of bile synthesis and 
circulation in normal conditions and in disease states.132 

Endobiotics and Xenobiotics
Other nuclear receptors appear to function as integrators of 
exogenous environmental signals, including natural endobiot-
ics (medicinal agents and toxins found in plants) and xenobiot-
ics (compounds that are not naturally occurring). In these cases, 
the role of the activated nuclear receptor is to induce cytochrome 
P450 enzymes that facilitate detoxification of potentially danger-
ous compounds in the liver. Receptors in this class include sterol 
and xenobiotic receptor (SXR), also known as pregnane X recep-
tor (PXR), and constitutive androstane receptor (CAR).133 Unlike 
other nuclear receptors that have high affinity for specific ligands, 
xenobiotic receptors have low affinity for a large number of ligands, 
reflecting their function in defense against a varied and challeng-
ing environment. Although these xenobiotic compounds are not 
hormones in the classic sense, the function of these nuclear recep-
tors is consistent with the general theme of helping the organism 
to cope with environmental challenges. 

Orphan Receptors
The nuclear receptor superfamily is one of the largest families of 
transcription factors, with 48 members in humans. The hormones 
and vitamins just described account for the functions of only a 
fraction of the nuclear receptors. The remaining receptors have 
been designated as orphan receptors because their putative ligands 
are not known.134

From analyses of mice and humans with mutations in various 
orphan receptors, it is clear that many of them are required for 
life or for the development of specific organs, ranging from brain 
nuclei to endocrine glands. Some orphan receptors appear to be 
active in the absence of any ligand (i.e., constitutively active) and 
may not respond to a natural ligand. Nevertheless, all of the recep-
tors known to respond to metabolites and environmental com-
pounds were originally discovered as orphans. Therefore future 
research will likely find that additional orphan receptors function 
as receptors for physiologic, pharmacologic, or environmental 
ligands. For example, the nuclear receptor NR1D1 (also known as 
Rev-Erbα), which is a regulator of circadian rhythms,17 has been 
shown to be a receptor for heme,135,136 although the physiologic 
significance of this remains to be determined. 

Variant Receptors
The C-terminal domain of the nuclear receptors is responsible for 
hormone binding. In a few nuclear receptors, including THRA and 
the glucocorticoid receptor, alternative splicing produces variant 
receptors with unique C-termini that do not bind ligands.137,138 
These variant receptors are normally expressed, but their biologic 
relevance is uncertain. They may modulate the action of the classic 
receptor to which they are related by inhibiting its function.

Other normally occurring variant nuclear receptors lack a 
classic DBD (discussed later). These types include NR0B1 (also 
known as DAX1), which is mutated in human disease,139 and 
PTPN6 (also known as SHP1).140 Their ligands have not been 
identified, and it is likely that NR0B1 and PTPN6 bind to and 
repress the actions of other receptors.
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Rare, naturally occurring mutations of hormone receptors can 
cause hormone resistance in affected patients. Inheritance of the 
hormone resistance phenotype is dominant if the mutant recep-
tor inhibits the action of the normal receptor, as occurs with 
resistance to thyroid hormone or PPARγ ligands.141 Inheritance 
is recessive if the mutation results in a complete loss of receptor 
function, as with the syndrome of hereditary calcitriol-resistant 
rickets, which is caused by mutations in the VDR.142 Inheritance 
can also be X-linked, as with the mutated androgen receptor in 
androgen insensitivity syndromes.143 

Regulation of Ligand Levels
Ligand levels can be regulated in several ways (Table 2.5). A dietary 
precursor may not be available in required amounts (e.g., hypo-
thyroidism due to iodine deficiency). Pituitary hormones (e.g., 
TSH) regulate the synthesis and secretion of classic thyroid and 
steroid hormones. If the glands that synthesize these hormones 
fail, hormone deficiency can occur.

Many nuclear receptor ligands are enzymatically converted from 
inactive prohormones to biologically active hormones; examples 
include the 5′ deiodination of thyroxine (T4) to triiodothyronine 
(T3) (see Chapter 11). This can occur in the target cell itself or 
within other tissues that subsequently release T3 to the circulation 
for action elsewhere in the body. In other cases, one hormone is a 
precursor for another, as illustrated by the aromatization of testos-
terone to estradiol. Biotransformation may occur in a specific tissue 
that is not the main target of the hormone, as with renal 1-hydrox-
ylation of vitamin D (see Chapter 29), or it may occur primar-
ily in target tissues (e.g., 5α-reduction of testosterone to DHT; 
see Chapter 19). Deficiency or pharmacologic inhibition of the 
enzymes responsible for these reactions can reduce hormone levels.

Transport into the target cell can also be a regulated process. 
T3 and T4, for example, do not penetrate the hydrophobic mem-
brane by themselves; they require a transporter such as MCT8 or 
OATP1. Mutations in MCT8, for example, lead to neurologic 
issues, including severe intellectual disability and movement dis-
orders with elevated serum T3.144 In this condition, it seems likely 
that the pathology is secondary to the inability of T3 to enter neu-
rons. Steroid hormones, by contrast, are believed to traverse the 
membrane by passive diffusion, although it remains possible that 
undiscovered binding proteins play a role.

Nuclear receptor ligands can be inactivated by hepatic or renal 
clearance or by more specific enzymatic processes. Mutations in 
genes encoding inactivating enzymes, or pharmacologic agents 
that inhibit these enzymes, can result in symptoms of hormone 
excess such as renal deactivation of cortisol by 11β-hydroxysteroid 
dehydrogenase (11βHSD). Because cortisol can activate the min-
eralocorticoid receptor, insufficient 11βHSD activity due to lico-
rice ingestion, gene mutation, or extremely high cortisol levels 
causes syndromes of apparent mineralocorticoid excess.145 

Nuclear Receptor Signaling Mechanisms
Nuclear receptors are multifunctional proteins that transduce the 
signals of their cognate ligands. General features of nuclear recep-
tor signaling are illustrated in Fig. 2.15.

For hormone action, the ligand and the nuclear receptor 
must both get into the nucleus. The nuclear receptor also must 
bind its ligand with high affinity. Because a major function of 
the receptor is to selectively regulate target gene transcription, 
it must recognize and bind to promoter and enhancer elements 
in appropriate target genes. One discriminatory mechanism 
is dimerization of a receptor with a second copy of itself or 
with another nuclear receptor. The DNA-bound receptor must 
work in the context of chromatin to signal the basal transcrip-
tion machinery to increase or decrease transcription of the tar-
get gene. In the regulation of signaling by nuclear receptors, 
some basic mechanisms are used by many or all members of 
the nuclear receptor superfamily, whereas other mechanisms 
impart the specificity that is crucial to the vastly different bio-
logic effects of the many hormones and ligands that use these 
related receptors.

Domain Structure of Nuclear Receptors
Nuclear receptors are proteins with molecular masses between 
50,000 and 100,000 Da. They share a common series of 
domains, referred to as domains A through F (Fig. 2.16). This 
linear depiction is useful for describing and comparing recep-
tors, but it does not capture the roles of protein folding and 
tertiary structure in mediating various receptor functions. The 
structures of individual domains have now been solved for 
many receptors, as has the full-length structure of a more lim-
ited number of nuclear receptors. 

  Mechanisms Regulating Ligand Levels

Precursor availability
Synthesis
Secretion
Activation (prohormone → active hormone)
Transport
Deactivation (active hormone → inactive hormone)
Elimination (hepatic, renal clearance)

TABLE 2.5 Prohormone
(ligand precursor)

Hormone
(ligand)

Phenotypic change
(hormone effect)

Transcription mRNA Protein

Hormone-responsive gene

Nucleus

HRE

• Fig. 2.15 Mechanism of signal transduction by hormones and other 
ligands that act through nuclear receptors. HRE, hormone response ele-
ment; mRNA, messenger ribonucleic acid.
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Nuclear Localization
The nuclear receptors, like all cellular proteins, are synthesized on 
ribosomes that reside outside the nucleus. Import of the nuclear 
receptors into the nucleus requires the nuclear localization signal 
(NLS), which is located near the border of the C and D domains (see 
Fig. 2.16). As a result of their NLSs, most of the nuclear receptors 
reside in the nucleus, with or without their ligands. A major exception 
is the glucocorticoid receptor; in the absence of hormone, it is teth-
ered in the cytoplasm to a complex of chaperone molecules, including 
heat shock proteins (HSPs). Hormone binding to the glucocorticoid 
receptor induces a conformational change that results in dissociation 
of the chaperone complex, allowing the hormone-activated glucocor-
ticoid receptor to translocate to the nucleus by means of its NLS. 

Hormone Binding
High-affinity binding of a lipophilic ligand is mediated by the 
C-terminal ligand-binding domain (LBD), domains D and E in 
Fig. 2.16. This region of the receptor has many other functions, 
including induction of dimerization and transcriptional regula-
tion (see later discussions).

The structure of the LBD has been solved for a number of recep-
tors. All share a similar overall structure consisting of 12 α-helical 
segments in a highly folded tertiary structure (Fig. 2.17A). The 
ligand binds within a hydrophobic pocket composed of amino acids 
in helices 3, 4, and 5 (H3, H4, and H5, respectively). The major 
structural change induced by ligand binding is an internal folding of 
the most C-terminal helix (H12), which forms a cap on the ligand-
binding pocket (see Fig. 2.17B). Although the overall mechanism of 
ligand binding is similar for all receptors, the molecular details are 
essential for determining ligand specificity.146,147 Ligand binding is 
the most critical determinant of receptor specificity. 

Target Gene Recognition by Receptors
Another crucial specificity factor for nuclear receptors is their 
ability to recognize and bind to the subset of genes that is to be 
regulated by their cognate ligand. Target genes contain specific 

DNA sequences that are called hormone response elements (HREs). 
Binding to the HRE is mediated by the central C domain of the 
nuclear receptors (see Fig. 2.16). This region is typically composed 
of 66 to 68 amino acids, including two subdomains that are called 
zinc fingers because the structure of each subdomain is maintained 
by four cysteine residues coordinated with a zinc atom.

The first of these zinc-ordered modules contains basic amino 
acids that contact DNA; as with the LBD, the overall structure of 
the DBD is similar for all members of the nuclear receptor super-
family. The specificity of DNA binding is determined by multiple 
factors (Table 2.6). All steroid hormone receptors, except for the 
estrogen receptor, bind to the double-stranded DNA sequence 
AGAACA (Fig. 2.18).

By convention, the double-stranded sequence is described by 
the sequence of one of its complementary strands, with the bases 
ordered from the 5′ to the 3′ end. Other nuclear receptors recognize 
the sequence AGGTCA. The primary determinant of this specific-
ity is a group of amino acid residues in the P box of the DBD (see 
Fig. 2.18). These hexamer DNA sequences are referred to as half-
sites. The only difference between these hexameric half-sites is the 
central two base pairs (underlined in Fig. 2.18). For some nuclear 
receptors, the C-terminal extension of the DBD contributes speci-
ficity for extended half-sites containing additional, highly specific 
DNA sequences 5′ to the hexamer. Another source of specificity 
for target genes is the spacing and orientation of these half-sites, 
which in most cases are bound by receptor dimers. 

Receptor Dimerization
The nuclear receptor DBD has affinity for the hexameric half-site 
or for extended half-sites; however, many HREs are composed 
of repeats of the half-site sequence, and most nuclear receptors 
bind these HREs as dimers.148 Steroid receptors, including estro-
gen receptors, function primarily as homodimers, which prefer-
entially bind to two half-sites oriented toward each other (i.e., 
inverted repeats [IRs]) with three base pairs in between (IR3) (see 
Fig. 2.18A). The major dimerization domain in steroid receptors 
is within the C domain, although the LBD contributes. Ligand 

Activation function-1 (AF-1)

DNA-binding (DBD)

P box (half-site specificity)

Dimerization

Nuclear localization
signal (NLS)

C-terminal extension (flanking
DNA binding specificity)

Ligand binding domain (LBD)

Ligand-dependent activation

Activation function 2 (AF-2)
helix 12

Repression

A/B C D E F

• Fig. 2.16 Domain structures of nuclear receptors.
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binding facilitates dimerization and DNA binding of steroid 
hormone receptors. Most other receptors, including THR, RAR, 
PPAR, LXR, and VDR, bind to DNA as heterodimers with RXR 
(see Fig. 2.18B).

Heterodimerization with RXR is mediated by two distinct 
interactions, one involving LBDs and the other involving DBDs. 
The receptor LBD mediates the strongest interaction, which 
occurs even in the absence of DNA. These receptor heterodimers 
bind to two half-sites arranged as direct repeats (DRs) with a vari-
able number of base pairs in between.

The spacing of the half-sites is a major determinant of target gene 
specificity; it results from the second receptor-receptor interaction, 
which involves the DBDs and is highly sensitive to the spacing of 
the half-sites. For example, VDR/RXR heterodimers bind preferen-
tially to DRs separated by three bases (DR3 sites), TR/RXR binds 
DR4, and RAR/RXR binds DR5 with highest affinity.149

Studies of isolated DBD binding to DNA have shown that 
these spacing requirements are related to the fact that the RXR 

binds to the upstream half-site (i.e., farthest from the start of tran-
scription). As a result of the periodicity of the DNA helix, each 
base pair separating the half-sites leads to a rotation of about 36 
degrees of one half-site relative to the other. Subtle differences in 
the structure of the receptor DBDs make the interactions more 
or less favorable at different degrees of rotation.150 Solution of 
the crystal structures of full-length nuclear receptor heterodimers 
bound to DNA has demonstrated remarkable diversity in the pre-
cise relationship between heterodimeric partners. For example, 
the PPARγ-RXR heterodimer forms a nonsymmetric complex, 
allowing the LBD of PPARγ to cooperate with both DBDs to 
enhance response element binding,151 whereas the LXR-RXR het-
erodimer binds symmetrically to its target sequence.152 Additional 
structures will be required to better understand the spectrum of 
RXR heterodimer binding to DNA.

The discovery of nuclear receptor binding sites has been largely 
empiric, based on the finding of binding sites in small num-
bers of known target genes. Unbiased analysis of thousands of 
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• Fig. 2.17 Structural basis of nuclear receptor ligand binding and cofactor recruitment. (A and C) Apo-
receptor (no ligand bound). (B and D) Ligand-bound receptor. (C and D) Structures showing the positional 
binding of a corepressor (CoR) (in C) or coactivator (CoA) (in D). NR, nuclear receptor.
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nuclear receptor binding locations in living cells using chroma-
tin immunoprecipitation followed by next generation sequencing 
has confirmed the canonical binding sequences for many nuclear 
receptors, including those of the estrogen receptor,153 the andro-
gen receptor,154,155 the glucocorticoid receptor,156 and PPARγ-
RXR heterodimers.157, 158 The complete set of cellular binding 
sites is referred to as the cistrome.159 Although the sequence of the 
genome is the same in nearly all cells of the body, cistromes are 
context dependent, owing to cooperation with factors that open 
chromatin in a cell type or developmentally specific way, allowing 
the receptors to bind. 

Receptor Regulation of Gene Transcription
Nuclear receptors mediate a variety of effects on gene transcrip-
tion. The most common modes of regulation are ligand-dependent 
gene activation, ligand-independent repression of transcrip-
tion, and ligand-dependent negative regulation of transcription 
(Table 2.7). Much of this regulation is mediated by interactions of 
nuclear receptors with proteins called coregulators, which include 
coactivators and corepressors.160

Ligand-Dependent Activation
Ligand-dependent activation is the best understood function of 
nuclear receptors and their ligands. The ligand-bound receptor 
increases transcription of a target gene to which it is bound. The 
DBD brings the receptor domains that mediate transcriptional 
activation to a specific gene. Transcriptional activation itself is 
mediated primarily by the LBD, which can function as an inde-
pendent unit even when it is transferred to a DNA-binding pro-
tein that is not related to nuclear receptors. The activation function 
(AF) of the LBD is referred to as AF2 (see Fig. 2.12).

Gene transcription is mediated by a large complex of factors 
that ultimately regulate the activity of ribonucleic acid (RNA) 
polymerase, the enzyme that uses the chromosomal DNA tem-
plate to direct the synthesis of messenger RNA. Most mamma-
lian genes are transcribed by RNA polymerase II using a large set 
of cofactor proteins that include basal transcription factors and 

associated factors collectively referred to as general transcription 
factors (GTFs). Details about GTFs are of fundamental impor-
tance and are available elsewhere.

The ligand-bound nuclear receptor communicates stimula-
tory signals to GTFs on the gene to which it is bound. Ligands 
specifically recruit a subset of the coregulators to the nuclear 
receptor LBD. Positively acting coregulators, called coactivators, 

  Determinants of Target Gene Specificity of 
Nuclear Receptors

Specificity Region of Receptor

 1.  Binding to DNA DBD (C domain)

 2.  Binding to specific 
hexamer

P box in C domain (AGGTCA vs. AGAACA)

 3.  Binding to sequences 
5′ to hexamer

Carboxy-terminal extension of DBD

 4.  Binding to hexamer 
repeats

Dimerization domain (C domain for steroid 
receptors; D, E, and F for others)

 5.  Recognition of hex-
amer spacing

RXR heterodimerization domain (nonste-
roid receptors, D/E domains)

 6.  Cell-specific factors Receptor-independent (cell-specific 
factors that open chromatin to permit 
receptor binding based on receptor-
intrinsic properties above)

DBD, DNA-binding domain; RXR, retinoid X receptor.

  

TABLE 2.6

A

B

Dimer
interface

P box

Steroid hormone receptor homodimer

Nuclear receptor (NR)-RXR heterodimer

P box

NR

N

RXR

Dimer
interface

A G A A C A
T C T T G T

T C T T G A
A G A A C T

NA G G T C A
T C C A G T

A G G T C A
T C C A G T

• Fig. 2.18 Structural basis for nuclear receptor (NR) DNA-binding speci-
ficity is shown in the ribbon diagrams of receptor DNA-binding domains 
(DBDs). (A) Steroid hormone receptor binding as a homodimer to the 
inverted repeat (arrows) of the AGAACA half-site. The central base pairs 
are underlined. (B) RXR-NR heterodimer binding to the direct repeat of 
AGGTCA. The position of the P box, the region of the DBD that makes 
direct contact with DNA, is shown. N, number of base pairs between the 
two half-sites; RXR, retinoid X receptor.

  Regulation of Gene Transcription by 
Nuclear Receptors

Mode of Regulation Examples

 1.  Ligand-dependent gene 
activation

DNA binding and recruitment of 
coactivators

 2.  Ligand-independent gene 
repression

DNA binding and recruitment of 
corepressors

 3.  Ligand-dependent negative 
regulation of gene expres-
sion

DNA binding and recruitment of 
corepressors, or coactivator 
redistribution

TABLE 2.7



38 SECTION I  Hormones and Hormone Action

specifically recognize the ligand-bound conformation of the 
LBD and bind to the nuclear receptor on DNA only when an 
activating (agonist) hormone or ligand is bound. A number of 
coactivator proteins that bind to liganded nuclear receptors have 
been described (Table 2.8).161

The most important determinant of coactivator binding is the 
position of H12, which changes dramatically when activating 
ligands bind receptors (see Fig. 2.17B). Along with H3, H4, and 
H5, H12 forms a hydrophobic cleft that is bound by short polypep-
tide regions of the coactivator molecules.162–164 These polypeptides, 
called NR boxes (see Fig. 2.17D), have characteristic sequences of 
LxxLL, in which L is leucine and xx can be any two amino acids.165

Coactivators increase the rate of gene transcription. This is 
accomplished by enzymatic functions, including histone acet-
yltransferase (HAT) activity; some coactivators possess intrinsic 
HAT activity, while others act as scaffolds to recruit HAT pro-
teins.166 HAT activity is critically important for activation because 
chromosomal DNA is tightly wrapped in nucleosomal units com-
posed of core histone proteins. Acetylation, as well as some other 
histone modifications, opens up this chromatin structure.

The best understood class of coactivator proteins is the p160 
family, whose name is based on their protein size (approximately 
160 kDa). The family contains at least three molecules, each with 

many names (see Table 2.8).167 These factors possess HAT activ-
ity and recruit other coactivators, such as CREB-binding protein 
(CBP) and p300, which are also HATs. A third HAT, p300/CBP-
associated factor (PCAF), is also recruited by liganded receptors. 
These HATs, along with a complex of SMARC molecules (SWI/
SNF-related, matrix-associated, actin-dependent regulators of 
chromatin) that direct ATP-dependent DNA unwinding, create a 
chromatin structure that favors transcription (Fig. 2.19).168

Recruitment of multiple HATs may reflect different specifici-
ties for core histones and, potentially, for some nonhistone pro-
teins. Some HATs also interact directly with GTFs and further 
enhance their activities. The mediator complex, which has also 
been called the thyroid hormone receptor–associated protein 
(TRAP) complex, and the vitamin D receptor–interacting protein 
(DRIP) complex link nuclear receptors to GTFs.169 The HATs 
and TRAP factors are recruited to the liganded, target gene–
bound receptor in an ordered manner that also involves cycling on 
and off the target receptor with a time scale of minutes.170 Nuclear 
receptor interactions with the genome are even more complex, 
with on-off rates that have been measured to be on the order of 
milliseconds.171 

Repression of Gene Expression by  
Unliganded Receptor
Although DNA binding is ligand dependent for steroid hormone 
receptors, other nuclear receptors are bound to DNA even in the 
absence of their cognate ligand. In many cases, the unliganded, 
DNA-bound receptor actively represses transcription of the target 
gene. By reducing the expression of the target gene, this repressive 
function of the receptor amplifies the magnitude of the subse-
quent activation by hormone or ligand. For instance, if the level 
of gene transcription in the repressed state is 10% of the basal level 
in the absence of a receptor, hormone activation to 10-fold above 
that basal level represents a 100-fold difference of transcription 
rate between hormone-deficient (repressed) genes and hormone-
activated genes (Fig. 2.20).172 This phenomenon helps to explain 
why loss of hormone production can result in a much more pro-
found phenotype than loss of the receptor. For example, hypothy-
roidism due to thyroid gland dysfunction or ablation or iodine 
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• Fig. 2.19 Coactivators and corepressors in transcriptional regulation by nuclear receptors. CBP, CREB-
binding protein; CoRNR, coreceptor nuclear receptor box; DBD, DNA-binding domain; DRIP, vitamin D 
receptor–interacting protein; GTFs, general transcription factors; HAT, histone acetyltransferase; HDAC, 
histone deacetylase; HRE, hormone response element; LBD, ligand-binding domain; N-CoR, nuclear 
receptor corepressor; NR, nuclear receptor; PCAF, CBP/p300-associated factor; SMRT, silencing media-
tor of retinoid and thyroid receptors; TRAP, thyroid hormone receptor–associated protein.

  Nuclear Receptor Coregulators

Coactivators
Chromatin remodeling
SWI/SNF complex
Histone acetyltransferase p160 family (Srcs)
p300/CBP
PCAF (p300/CBP-associated factor)
Mediator

Corepressors
NCoR (nuclear receptor corepressor)
SMRT (silencing mediator for retinoid and thyroid hormone receptors)

CBP, CREB-binding protein (CREB = cAMP-response element–binding protein).

  

TABLE 2.8
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deficiency leads to severe consequences, up to and including cre-
tinism, coma, and death. This is true in mice as well as people. 
On the other hand, mice lacking all thyroid hormone receptors 
are relatively mildly affected, with only moderate growth and fer-
tility issues.173,174 This discrepancy can be attributed to the fact 
that an unliganded receptor in the hormone deficient state exerts 
unchecked repressive activity, which has more severe consequences 
than loss of both repressive and activating functions of THR.

In many ways, the molecular mechanism of repression is the 
mirror image of ligand-dependent activation. The unliganded 
nuclear receptor recruits negatively acting coregulators, called 
corepressors, to the target gene. The two major corepressors 
are large (approximately 270 kDa) proteins: nuclear receptor 
corepressor (NCoR) and silencing mediator for retinoid and 
thyroid receptors (SMRT, also known as NCoR2).175 NCoR 
and SMRT specifically recognize the unliganded conformation 
of nuclear receptors and use an amphipathic helical sequence 
similar to the NR box of coactivators to bind to a hydrophobic 
pocket in the receptor.

For corepressors, the peptide responsible for receptor bind-
ing is called the CoRNR box (see Fig. 2.17C), and it contains the 
sequence (I or L)xx(I or V)I, in which I is isoleucine, L is leu-
cine, V is valine, and xx represents any two amino acids.176 The 
receptor uses helices 3 to 5 to form the hydrophobic pocket, as in 

coactivator binding, but H12 does not promote and even hinders 
corepressor binding. This highlights the role of the ligand-depen-
dent change in the position of H12 as the switch that determines 
repression versus activation by nuclear receptors (see Fig. 2.19).177

The transcriptional functions of NCoR and SMRT are the 
opposite of those of the coactivators. The corepressors themselves 
do not possess enzyme activity, but they recruit histone deacety-
lases (HDACs) to the target gene, thereby reversing the effects 
of histone acetylation described earlier and leading to a compact, 
repressed state of chromatin. Although the mammalian genome 
contains multiple HDACs, several of which may play a role in 
nuclear receptor function, the main one involved in repression 
is HDAC3, whose enzyme activity depends on interaction with 
NCoR or SMRT.178 The ability of NCoR to bind and activate 
HDAC3 is required for normal metabolic and circadian physi-
ology.179 The corepressors interact directly with GTFs to inhibit 
their transcriptional activities, and they also exist in large, multi-
protein complexes whose range of functions is not fully under-
stood. Biology is complex, however, and recent studies suggest 
that in brown adipose tissue, HDAC3 foregoes its corepressor 
role and acts as a coactivator in concert with the nuclear receptor 
ERRα. In this case, the effect of HDAC3 is mediated at least in 
part by deacetylation of the key coactivator protein PGC-1, rather 
than a histone.180 
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• Fig. 2.20 Repression and activation functions augment the dynamic range of transcriptional regulation by 
nuclear receptors. The magnitudes of activation and repression were arbitrarily set at 10-fold for this theo-
retical example. In cells, these magnitudes vary as a function of coactivator and corepressor concentration 
and in a target gene–specific manner. HRE, hormone response element.
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Ligand-Dependent Negative Regulation of Gene 
Expression: Transrepression
The ligand-dependent switch between repressed and activated 
receptor conformations explains how nuclear receptor ligands 
activate gene expression. However, many important gene targets 
of such hormones are turned off in the presence of the ligand. 
This is referred to as ligand-dependent negative regulation of tran-
scription, or transrepression, to distinguish it from the repression of 
basal transcription by unliganded receptors.

The mechanism of negative regulation is less well under-
stood than ligand-dependent activation, and there may in fact 
be several mechanisms. One mechanism involves nuclear recep-
tor binding to DNA-binding sites that reverse the paradigm of 
ligand-dependent activation (i.e., negative response elements). 
For example, when the unliganded thyroid receptor binds to 
the negative response element of the genes for the β-subunit of 
TSH or TSH-releasing hormone, transcription is activated,181 
although more recent studies suggest that the role and recruit-
ment of coregulators in this process are complex.182 In other 
cases, negative regulation may result from nuclear receptors that 
bind to, and inhibit, other transcription factors without bind-
ing DNA. This interaction leads to redistribution of coactiva-
tors from the other transcription factors that positively regulate 
the gene. Recent evidence supports this model, whereby inhibi-
tion of the activity of the positively acting factors results in the 
observed negative regulation.183,184 Nuclear receptors can also 
lead to inhibition of gene expression indirectly by activating a 
gene that encodes a transcriptional repressor. 

Roles of Other Nuclear Receptor Domains
The N-terminal A/B domain of the nuclear receptors is the 
most variable region among all members of the superfamily in 
terms of length and amino acid sequence. Subtypes of the same 
receptor often have completely different A/B domains, and the 
function of this domain is the least defined. It is not required 
for unliganded repression or for ligand-dependent activation. 
In many receptors, the A/B domain contains positive transcrip-
tional activity, often referred to as activation function 1 (AF1) 
(see Fig. 2.16). Its activity is ligand independent, but it prob-
ably interacts with coactivators and may influence the magni-
tude of activation by agonists or partial agonists. This AF is 
tissue specific and tends to be more important for steroid hor-
mone receptors, whose A/B domains are notably longer than 
those of other members of the superfamily.185 The F domain of 
the nuclear receptors is hypervariable in length and sequence, 
and its function is not known. 

Cross-Talk With Other Signaling Pathways
Hormones and cytokines that signal through cell surface recep-
tors also regulate gene transcription, often by activating protein 
kinases that phosphorylate transcription factors such as CREB. 
Such signals can also lead to phosphorylation of nuclear recep-
tors. Multiple signal-dependent kinases can phosphorylate nuclear 
receptors, leading to conformational changes that regulate func-
tion.186 Phosphorylation can lead to changes in DNA binding, 
ligand binding, or coactivator binding, depending upon the spe-
cific kinase, receptor, and domain of the receptor that is phos-
phorylated. The properties of coactivators and corepressors are 
also regulated by phosphorylation.187 

Receptor Antagonists
Certain ligands function as receptor antagonists by competing with 
agonists for the ligand-binding site. In the case of steroid hormone 
receptors, the position of H12 in the antagonist-bound receptor is 
not identical to that in the unliganded receptor or in the agonist-
bound receptor. In antagonist-bound steroid receptors, H12, which 
has a sequence that resembles the NR box, binds to the coactivator-
binding pocket of the receptor and thereby prevents coactivator 
binding.188 This antagonist-bound conformation of the receptor 
also favors corepressor binding to steroid hormone receptors. 

Tissue Selectivity of Ligands Interacting With 
Nuclear Receptors
Many endogenous hormones that act through nuclear receptors do so 
in a tissue-specific manner. The most obvious mechanism is differen-
tial expression of the receptors, both in space (e.g., cell type specific-
ity)189 and time (e.g., circadian variation).190 Ligand levels may be 
regulated intracellularly (see earlier discussion and Table 2.5), and 
post-translational modification (e.g., phosphorylation) influences 
cell-specific receptor function. Although nuclear receptors bind at 
thousands of sites on genomic DNA, the specific binding sites are 
regulated in a cell type–specific manner. For example, the estrogen 
receptor binds to overlapping but clearly different sets of genomic 
sites in the uterus and in the breast, probably because of the differ-
ential actions of so-called pioneer transcription factors, which open 
tightly compacted chromatin in a tissue-specific manner and enable 
nuclear receptor and other transcription factors to bind.191

Some ligands function as antagonists in certain tissues but as 
full or partial agonists in others. These selective receptor modula-
tors include compounds such as tamoxifen, a selective estrogen 
receptor modulator (SERM). SERMs are estrogen receptor antag-
onists with respect to the functions of AF2, including coregulator 
binding, and they require the AF1 for their agonist activity.192 
This agonism, like AF1 activity, tends to be tissue specific and 
therefore has great therapeutic utility.193 Table 2.9 summarizes 
factors contributing to the tissue specificity of receptor activity. 

Nongenomic Actions of Nuclear  
Receptor Ligands
Some actions of steroids and other nuclear receptor ligands occur 
within seconds or minutes, far quicker than should be possible 

  Factors Modulating Receptor Activity in 
Different Tissues

Concentration of receptor
Cell specificity
Variation within a given cell type
Post-translational modification of receptor (e.g., phosphorylation)
Regulation of intracellular ligand levels (see Table 2.5)
Tissue-specific factors that open chromatin
Function of ligand

Agonist
Partial agonist
Antagonist

Concentration and types of coregulators
Coactivators
Corepressors

TABLE 2.9
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using the transcriptional mechanisms described in the chapter. 
This suggests that some traditional nuclear receptor ligands may 
have a discrete set of nongenomic actions. There is now reasonable 
evidence that thyroid hormone, estrogen, androgen, and possibly 
other ligands can bind and activate receptors outside of the nucleus. 
In most cases, these extranuclear receptors are splice variants of the 
same genes that encode the traditional nuclear receptor, often with 
loss of the DNA binding domain and NLS. Binding of ligands to 
these receptors causes activation of many classic signaling pathways, 

such as Src, ERK, and Akt pathways.194 In some cases there may 
be binding of ligands to receptors that are completely unrelated to 
the nuclear receptors, though this is less clear. The nongenomic and 
genomic actions of ligands may act cooperatively (e.g., by causing 
phosphorylation of the nuclear form of the receptor).195 
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