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TOR has borne the name of Dr. Kelley with pride for 
decades, recognizing his foresight and scholarship in 
creating the premier clinical and academic text in  

the discipline. With the passage of time, just as 
rheumatology has advanced, so too TOR has evolved. 
This has occurred driven particularly by the vision and 

energy of Dr. Firestein, our Editor-in-Chief. The 
co-editors consider it timely to acknowledge  

Dr. Firestein’s remarkable contribution by renaming the 
textbook for this, its tenth edition.
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Preface

Whither textbooks: Learning in the internet era
The tenth edition of the Textbook of Rheumatology 

(TOR10) returns with the entire editorial team from the 
previous edition and a contributing group of truly outstand-
ing experts in the field. Once again, we believe that this 
represents an authoritative—actually, the authoritative—
resource for rheumatology trainees, clinicians, and 
researchers.

One key question that we are asked and actually ask 
ourselves is, “Why produce a textbook when you can log 
onto the internet and download a review article or original 
research in an instant?” Traditionalists may relish the shiny 
pages of a beautiful book, but this seems antiquated in the 
e-book era. However, we contend that a tome like TOR10 
provides an entirely different experience for the reader. It is 
“moderated” by the editors; authors are carefully vetted, 
and their chapters are reviewed by multiple experts. The 
organization of TOR10 is also quite distinct. We do not 
divide a disease or topic into multiple short chapters written 
by several authors and covering narrow areas; instead, we 
purposely keep chapters broad enough to provide an inte-
grated view of the literature. That does not mean that 
TOR10 chapters are broad or superficial. On the contrary, 
the level of scholarship is extraordinary, and the authors 
demonstrate their total mastery of the topic. We have 

continued the principle of the founding editors to provide 
comprehensive references so that trainees appreciate the 
original, classic papers in our field. The publication cycle of 
textbooks is longer than the rapid fire of specific scientific 
discoveries or the theory du jour. This offers the distinct 
advantage of pause for thought. Paracelsus declared the 
physician’s greatest friend to be time. TOR10 delivers a 
considered appraisal over time of the evolving general con-
cepts of rheumatology.

Even so, textbooks might seem anachronistic at this 
point. Not so for TOR10! We have migrated more and more 
to online or e-versions. While textbook paper copy distribu-
tion drifts downward, online access as measured by “clicks” 
has soared. These observations confirm our basic premise 
that our specialty still demands the content and care that 
goes into creating a unique resource like TOR10.

In the coming years, our book will continue to adapt to 
a changing learning environment. One thing that will not 
change, however, is the editors’ devotion to bringing readers 
an authoritative, well-written, and readable resource that 
can be trusted as the “gold standard” for our specialty to 
help them understand the science and practice of rheuma-
tology. See you in a few years with TOR11!

The Editors
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Steven R. Goldring • Mary B. Goldring

STRUCTURE AND FUNCTION OF BONE, 
JOINTS, AND CONNECTIVE TISSUE

CHAPTER 1 

Biology of the Normal Joint

PART  1

CLASSIFICATION OF JOINTS

Human joints, which provide the structures by which bones 
join with one another, may be classified according to the 
histologic features of the union and the range of joint 
motion. Three classes of joint design exist: (1) synovial or 
diarthrodial joints (Figure 1-1), which articulate with free 
movement, have a synovial membrane lining the joint 
cavity, and contain synovial fluid; (2) amphiarthroses, in 
which adjacent bones are separated by articular cartilage or 
a fibrocartilage disk and are bound by firm ligaments, per-
mitting limited motion (e.g., the pubic symphysis, interver-
tebral disks of vertebral bodies, distal tibiofibular articulation, 
and sacroiliac joint articulation with pelvic bones); and (3) 
synarthroses, which are found only in the skull (suture lines) 
where thin, fibrous tissue separates adjoining cranial plates 
that interlock to prevent detectable motion before the end 
of normal growth, yet permit growth in childhood and 
adolescence.

Joints also can be classified according to the connective 
tissues that are present. Symphyses have a fibrocartilaginous 

disk separating bone ends that are joined by firm ligaments 
(e.g., the symphysis pubis and intervertebral joints). In  
synchondroses, the bone ends are covered with articular 
cartilage, but no synovium or significant joint cavity are 
present (e.g., the sternomanubrial joint). In syndesmoses, 
the bones are joined directly by fibrous ligaments without a 
cartilaginous interface (the distal tibiofibular articulation is 
the only joint of this type outside the cranial vault). In 
synostoses, bone bridges are formed between bones, produc-
ing ankylosis.

The synovial joints are classified further according to 
their shapes, which include ball-and-socket (hip), hinge 
(interphalangeal), saddle (first carpometacarpal), and plane 
(patellofemoral) joints. These configurations reflect the 
varying functions, with the shapes and sizes of the opposing 
surfaces determining the direction and extent of motion. 
The various designs permit flexion, extension, abduction, 
adduction, or rotation. Certain joints can act in one (humer-
oulnar), two (wrist), or three (shoulder) axes of motion.

This chapter concentrates on the developmental biology 
and relationship between structure and function of a “pro-
totypic,” “normal” human diarthrodial joint—the joint in 
which arthritis is most likely to develop. Most research that 
has been performed concerns the knee because of its acces-
sibility, but other joints are described when appropriate.

DEVELOPMENTAL BIOLOGY OF THE 
DIARTHRODIAL JOINT

Skeletal development is initiated by the differentiation of 
mesenchymal cells that arise from three sources: (1) neural 
crest cells of the neural ectoderm that give rise to craniofa-
cial bones; (2) the sclerotome of the paraxial mesoderm, or 
somite compartment, which forms the axial skeleton; and 
(3) the somatopleure of the lateral plate mesoderm, which 
yields the skeleton of the limbs.1 The appendicular skeleton 
develops in the human embryo from limb buds, which are 
first visible at approximately 4 weeks of gestation. Structures 
resembling adult joints are generated at approximately 4 to 
7 weeks of gestation.2 Many other crucial phases of muscu-
loskeletal development follow, including vascularization of 
epiphyseal cartilage (8 to 12 weeks), appearance of villous 
folds in synovium (10 to 12 weeks), evolution of bursae  
(3 to 4 months), and the appearance of periarticular fat  
pads (4 to 5 months).

KEY POINTS

Condensation of mesenchymal cells, which differentiate into 
chondrocytes, results in formation of the cartilage anlagen, 
which provides the template for the developing skeleton.

During development of the synovial joint, growth 
differentiation factor–5 regulates interzone formation, and 
interference with movement of the embryo during 
development impairs joint cavitation.

Members of the bone morphogenetic protein/transforming 
growth factor-β, fibroblast growth factor, and Wnt families 
and the parathyroid hormone–related peptide/Indian 
hedgehog axis are essential for joint development and 
growth plate formation.

The synovial lining of diarthrodial joints is a thin layer of cells 
lacking a basement membrane and consisting of two 
principal cell types—macrophages and fibroblasts.

The articular cartilage receives its nutritional requirements 
via diffusion from the synovial fluid, and interaction of the 
cartilage with components of the synovial fluid contributes 
to the unique low-friction surface properties of the articular 
cartilage.
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of the cartilage anlagen and are separated by a narrow band 
of densely packed cellular blastema that remains and forms 
the interzone. Cavitation begins in the central interzone at 
about 8 weeks (stage 23).

Although the cellular events associated with joint forma-
tion have been recognized for many years, only more 
recently have the genes regulating these processes been 
elucidated.6,7,9 These genes include growth differentiation 
factor (GDF)-5 (also known as cartilage-derived morphoge-
netic protein-1) and Wnt14 (also known as Wnt9a), which 
are involved in early joint development. Two major roles 
have been proposed for Wnt14. First, it acts at the onset of 
joint formation as a negative regulator of chondrogenesis. 
Second, it facilitates interzone formation and cavitation by 
inducing the expression of GDF-5, autotaxin, lysophospha-
tidic acid, the bone morphogenetic protein (BMP) antago-
nist, chordin, and the hyaluronan receptor, CD44.4,11 
Paradoxically, application of GDF-5 to developing joints in 
mouse embryo limbs in organ culture causes joint fusion,12 
suggesting that temporospatial interactions among distinct 
cell populations are important for the correct response. The 
current view is that GDF-5 is required at the early stages of 
condensations, where it stimulates recruitment and differ-
entiation of chondrogenic cells, and later, when its expres-
sion is restricted to the interzone.

The distribution of collagen types and proteoglycans in 
developing avian and rodent joints has been characterized 
histologically and by immunohistochemistry and in situ 
hybridization.9,13,14 Types I and III collagen characterize the 

Figure 1-1  A normal human interphalangeal joint, in sagittal section, 
as an example of a synovial, or diarthrodial, joint. The tidemark repre-
sents the calcified cartilage that bonds articular cartilage to the subchon-
dral bone plate. (From Sokoloff L, Bland JH: The musculoskeletal system. 
Baltimore, Williams & Wilkins, 1975. Copyright 1975, the Williams & Wilkins 
Co, Baltimore.)
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The upper limbs develop approximately 24 hours earlier 
than the analogous portions of the lower limbs. Proximal 
structures, such as the glenohumeral joint, develop before 
more distal ones, such as the wrist and hand. As a conse-
quence, insults to embryonic development during limb for-
mation affect a more distal portion of the upper limb than 
of the lower limb. Long bones form as a result of replace-
ment of the cartilage template by endochondral ossification. 
The stages of limb development are well described by 
O’Rahilly and Gardner2,3 and are shown in Figure 1-2. The 
developmental sequence of the events occurring during 
synovial joint formation and some of the regulatory factors 
and extra-cellular matrix components involved are sum-
marized in Figure 1-3. The three main stages in joint  
development are interzone formation, cavitation, and mor-
phogenesis, as described in detail in several reviews.4-9

INTERZONE FORMATION AND  
JOINT CAVITATION

The structure of the developing synovial joint and the 
process of joint cavitation have been described in many 
classic studies performed on the limbs of mammalian and 
avian embryos.10 In the human embryo, cartilage condensa-
tions, or chondrifications, can be detected at stage 17, when 
the embryo is small—approximately 11.7 mm long.2,3 In the 
region of the future joint, after formation of the homoge-
neous chondrogenic interzone at 6 weeks (stages 18 and 
19), a three-layered interzone is formed at approximately 7 
weeks (stage 21), which consists of two chondrogenic, 
perichondrium-like layers that cover the opposing surfaces 
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major role in forcing the cells apart and inducing rupture of 
the intervening extra-cellular matrix by tensile forces. This 
mechanism accounts partially for observations that joint 
cavitation is incomplete in the absence of movement.17-19 
Equivalent data from human embryonic joints are difficult 
to obtain,20 but in all large joints in humans, complete 
joint cavities are apparent at the beginning of the fetal 
period.

CARTILAGE FORMATION AND 
ENDOCHONDRAL OSSIFICATION

The skeleton develops from the primitive, avascular, densely 
packed cellular mesenchyme, termed the skeletal blastema. 
Common precursor mesenchymal cells divide into chondro-
genic, myogenic, and osteogenic lineages that determine 
the differentiation of cartilage centrally, muscle peripher-
ally, and bone. The surrounding tissues, particularly epi
thelium, influence the differentiation of mesenchymal 
progenitor cells to chondrocytes in the cartilage anlagen. 
The cartilaginous nodules appear in the middle of the blas-
tema, and simultaneously cells at the periphery become 
flattened and elongated to form the perichondrium. In the 
vertebral column, cartilage disks arise from portions of the 
somites surrounding the notochord, and nasal and auricular 
cartilage and the embryonic epiphysis form from the peri-
chondrium. In the limb, the cartilage remains as a resting 
zone that later becomes the articular cartilage, or it under-
goes terminal hypertrophic differentiation to become  
calcified (growth plate formation) and is replaced by bone 
(endochondral ossification). The latter process requires 
extra-cellular matrix remodeling and vascularization (angio-
genesis). These events are controlled exquisitely by cellular 
interactions with the surrounding matrix, growth and dif-
ferentiation factors, and other environmental factors that 
initiate or suppress cellular signaling pathways and tran-
scription of specific genes in a temporospatial manner.

matrix produced by mesenchymal cells, which switch to the 
production of types II, IX, and XI collagens that typify the 
cartilaginous matrix at the time of condensation. The mes-
senger RNAs (mRNAs) encoding the small proteoglycans, 
biglycan and decorin, may be expressed at this time, but the 
proteins do not appear until after cavitation in the regions 
destined to become articular cartilage. The interzone regions 
are marked by the expression of genes encoding type IIA 
collagen by chondrocyte progenitors in the perichondrial 
layers, type IIB and XI collagens by differentiated chondro-
cytes in the cartilage anlagen, and type I collagen in the 
interzone and in the developing capsule and perichondrium 
(Figure 1-4).15

The interzone region contains cells in two outer layers, 
where they are destined to differentiate into chondrocytes 
and become incorporated into the epiphyses, and in a thin 
intermediate zone where they are programmed to undergo 
joint cavitation and may remain as articular chondrocytes.8 
These early chondrocytes arise from the same population, 
but unlike the other chondrocytes of the anlagen, they do 
not activate matrilin-1 expression and are destined to form 
the articular surface.16 Fluid and macromolecules accumu-
late in this space and create a nascent synovial cavity. Blood 
vessels appear in the surrounding capsulosynovial blastemal 
mesenchyme before separation of the adjacent articulating 
surfaces. Although it was first assumed that these interzone 
cells should undergo necrosis or programmed cell death 
(apoptosis), many investigators have found no evidence of 
DNA fragmentation preceding cavitation. In addition, no 
evidence exists that metalloproteinases are involved in loss 
of tissue strength in the region undergoing cavitation. 
Instead, the actual joint cavity seems to be formed by mech-
anospatial changes induced by the synthesis of hyaluronan 
via uridine diphosphoglucose dehydrogenase (UDPGD) 
and hyaluronan synthase. Interaction of hyaluronan CD44 
modulates cell migration, but the accumulation of hyaluro-
nan and the associated mechanical influences play the 

Figure 1-3  Development of long bones and diathrodial joint formation from cartilage anlagen. BMP, Bone morphogenetic protein; C-C-1, Erg3 
variant; CD44, cell determinant 44; Cux, cut-repeat homeobox protein; Erg, ETS-related gene 5; FGF, fibroblast growth factor; GDF, growth and dif-
ferentiation factor; Gli, glioma-associated oncogene homolog; Hox, homeobox; IGF, insulin-like growth factor; Ihh, Indian hedgehog; Lmx1b, LIM 
homeodomain transcription factor 1b; PTHrP, parathyroid hormone–related protein; RA, retinoic acid; r-Frg, radical fringe; Runx, runt domain binding 
protein; Shh, Sonic hedgehog; Sox, SRY-related high mobility group-box protein; TGF-β, transforming growth factor-β; Wnt, wingless type. 
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found in noncartilage collagens. The initiation of condensa-
tion is associated with increased hyaluronidase activity and 
the transient upregulation of versican, tenascin, syndecan, 
the cell adhesion molecules, neural cadherin (N-cadherin) 
and neural cell adhesion molecule (NCAM), which facili-
tate cell-cell interactions.21,23

Before chondrocyte differentiation, the cell-matrix inter-
actions are facilitated by the binding of fibronectin to  
syndecan, thus downregulating NCAM and setting the  
condensation boundaries. Increased cell proliferation and 
extra-cellular matrix remodeling, with the disappearance  
of type I collagen, fibronectin, and N-cadherin and the 
appearance of tenascins, matrilins, and thrombospondins, 
including cartilage oligomeric matrix protein, initiate the 
transition from chondroprogenitor cells to a fully commit-
ted chondrocyte.1,23-25 N-cadherin and NCAM disappear in 

Condensation and Limb-Bud Formation

Formation of the cartilage anlage occurs in four stages: (1) 
cell migration, (2) aggregation regulated by mesenchymal-
epithelial cell interactions, (3) condensation, and (4) chon-
drocyte differentiation. Interactions with the epithelium 
determine mesenchymal cell recruitment and migration, 
proliferation, and condensation.2,3,21 The aggregation of 
chondroprogenitor mesenchymal cells into precartilage 
condensations was first described by Fell22 and depends on 
signals initiated by cell-cell and cell-matrix interactions, 
the formation of gap junctions, and changes in the cytoskel-
etal architecture. Before condensation, the prechondrocytic 
mesenchymal cells produce extra-cellular matrix that is rich 
in hyaluronan and type I collagen and type IIA collagen, 
which contains the exon-2–encoded aminopropeptide 

Figure 1-4  In situ hybridization of a 13-day-old (stage 39) chicken embryo middle digit, proximal interphalangeal joint, midfrontal sections. A, Bright-
field image showing developing joint and capsule (C). B, Equivalent paraffin section of opposite limb of same animal, showing onset of cavitation later-
ally (arrow). C, Expression of type IIA collagen messenger RNA (mRNA) in articular surface cells, perichondrium, and capsule. D, Type IIB collagen mRNA 
is expressed only in chondrocytes of the anlagen. E, Type XI collagen mRNA is expressed in the surface cells, perichondrium, and capsule, with lower 
levels in chondrocytes. F, Type I collagen mRNA is present in cells of the interzone and capsule. C through F images are dark field. Calibration bar = 1 
µm. (From Nalin AM, Greenlee TK Jr, Sandell LJ: Collagen gene expression during development of avian synovial joints: transient expression of types II and XI 
collagen genes in the joint capsule. Develop Dyn 203:352–362, 1995.)
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BMP-6 is found later exclusively in hypertrophic chondro-
cytes along with BMP-2. More than 23 FGFs have been 
identified thus far.38 The specific ligands that activate each 
FGF receptor (FGFR) during chondrogenesis in vivo have 
been difficult to identify because the signaling depends on 
the temporal and spatial location of not only the ligands 
but also the receptors.39 FGFR2 is upregulated early in con-
densing mesenchyme and is present later in the periphery 
of the condensation along with FGFR1, which is expressed 
in surrounding loose mesenchyme. FGFR3 is associated 
with proliferation of chondrocytes in the central core of the 
mesenchymal condensation and overlaps with FGFR2. Pro-
liferation of chondrocytes in the embryonic and postnatal 
growth plate is regulated by multiple mitogenic stimuli, 
including FGFs, which converge on cyclin D1.40

Early studies indicated that FGFR3 could serve as a 
master inhibitor of chondrocyte proliferation via Stat1  
and the cell cycle inhibitor p21. More recent work has 
shown that FGFR3 activation downregulates AKT activity 
to decrease proliferation41 and MEK activation leads to 
decreased chondrocyte differentiation.42 The physiologic 
FGFR3 ligands are not known, but FGF-9 and FGF-18 are 
good candidates because they bind FGFR3 in vitro and are 
expressed in the adjacent perichondrium and periosteum, 
forming a functional gradient.28,43 FGF-18–deficient mice 
have an expanded zone of proliferating chondrocytes similar 
to that in FGFR3-deficient mice, and FGF-18 can inhibit 
Indian hedgehog (Ihh) expression. As the growth plate 
develops, FGFR3 disappears and FGFR1 is upregulated in 
the prehypertrophic and hypertrophic zones, where FGF-18 
and FGF-9 regulate vascular invasion by inducing vascular 
endothelial growth factor (VEGF) and VEGFR1 and termi-
nal differentiation.38,44,45

The proliferation of chondrocytes in the lower prolifera-
tive and prehypertrophic zones is under the control of a 
local negative feedback loop involving signaling by parathy-
roid hormone–related protein (PTHrP) and Ihh.46 Ihh 
expression is restricted to the prehypertrophic zone, and the 
PTHrP receptor is expressed in the distal zone of periarticu-
lar chondrocytes. The adjacent, surrounding perichondrial 
cells express the Hedgehog receptor patched (Ptch), which, 
upon Ihh binding, similar to Shh in the mesenchymal con-
densations, activates Smo and induces Gli transcription 
factors, which can feedback regulate Ihh target genes in a 
positive (Gli1 and Gli2) or negative (Gli3) manner.47,48 Ihh 
induces expression of PTHrP in the perichondrium, and 
PTHrP signaling stimulates cell proliferation via its receptor 
expressed in the periarticular chondrocytes.28,49 More recent 
evidence indicates that Ihh also acts independently of 
PTHrP on periarticular chondrocytes to stimulate differen-
tiation of columnar chondrocytes in the proliferative zone, 
whereas PTHrP acts by preventing premature differen
tiation into prehypertrophic and hypertrophic chondro-
cytes, suppressing premature expression of Ihh.50,51 Ihh and 
PTHrP, by transiently inducing proliferation markers and 
repressing differentiation markers, function in a temporo-
spatial manner to determine the number of cells that remain 
in the chondrogenic lineage versus the number that enter 
the endochondral ossification pathway.46 Components of 
the extra-cellular matrix also contribute to regulation of the 
different stages of growth plate development, including 
chondrogenesis and terminal differentiation, by interacting 

differentiating chondrocytes and are detectable later only 
in perichondrial cells. The differentiated chondrocytes then 
proliferate and become prehypertrophic when they stop 
proliferating and undergo the complex process of hypertro-
phic maturation. Whether the resting differentiated chon-
drocytes remain within cartilage elements in articular joints 
or other progenitors are the source of the articular chondro-
cyte has not been clarified completely.

Much of the current understanding of limb development 
is based on early studies in chickens and more recently in 
mice. The regulatory events are controlled by interacting 
patterning systems involving homeobox (Hox) transcrip-
tion factors and fibroblast growth factor (FGF), hedgehog, 
transforming growth factor-β (TGF-β)/BMP, and Wnt path-
ways, each of which functions sequentially over time  
(see Figure 1-3).11,26-29 The HoxA and HoxD gene clusters, 
which are crucial for the early events of limb patterning in 
the undifferentiated mesenchyme, are required for the  
expression of FGF-8 and Sonic hedgehog (Shh),30 which 
modulate the proliferation of cells within the condensa-
tions.21 BMP-2, BMP-4, and BMP-7 coordinately regulate 
the patterning of limb elements within the condensations 
depending on the temporal and spatial expression of BMP 
receptors and BMP antagonists, such as noggin and chordin, 
as well as the availability of BMP- and TGF–β-induced 
SMADs (signaling mammalian homologues of Drosophila 
mothers against decapentaplegic).31 BMP signaling is re-
quired for the formation of precartilaginous condensations 
and for the differentiation of precursors into chondro-
cytes,32,33 acting in part by opposing effects on FGF actions.34 
Growth of the condensation ceases when noggin inhibits 
BMP signaling and permits differentiation to chondrocytes. 
The cartilage formed serves as a template for formation of 
cartilage elements in the vertebra, sternum, and rib, and for 
limb elongation or endochondral bone formation.

Molecular Signals in Cartilage Morphogenesis 
and Growth Plate Development

The cartilage anlagen grow by cell division and deposition 
of the extra-cellular matrix and by apposition of proliferat-
ing cells from the inner chondrogenic layer of the perichon-
drium. The nuclear transcription factor, Sox9, is one of the 
earliest markers expressed in cells undergoing condensation 
and is required for the subsequent stage of chondrogenesis 
characterized by the deposition of matrix containing col-
lagens II, IX, and XI and aggrecan in the cartilage anlagen.35 
The expression of SOX proteins depends on BMP signaling 
via BMPR1A and BMPR1B, which are functionally redun-
dant and active in chondrocyte condensations, but not in 
the perichondrium.32 Sox5 and Sox6 are required for the 
expression of Col9a1, aggrecan, link protein, and Col2a1 
during chondrocyte differentiation.36 The runt-domain 
transcription factor, Runx2 (also known as core binding 
factor, Cbfa1), is expressed in all condensations, including 
those that are destined to form bone.

Throughout chondrogenesis, the balance of signaling by 
BMPs and FGFs determines the rate of proliferation and the 
pace of the differentiation.28,34,37 In the long bones, long 
after condensation, BMP-2, BMP-3, BMP-4, BMP-5, and 
BMP-7 are expressed primarily in the perichondrium, and 
only BMP-7 is expressed in the proliferating chondrocytes.37 
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a role for defective vascularization also has been proposed. 
The extra-cellular matrix remodeling that accompanies 
chondrocyte terminal differentiation is thought to induce 
an alteration in the environmental stress experienced by 
hypertrophic chondrocytes, which eventually undergo 
apoptosis.67 Whether chondrocyte hypertrophy with cell 
death is the ultimate fate of hypertrophic chondrocytes or 
whether hypertrophy is a transient process that precedes 
osteogenesis has been a subject of debate. However, recent 
genetic lineage tracing studies suggest that hypertrophic 
chondrocytes can survive at the chondro-osseous junction 
and become osteoblasts and osteocytes.68,69

Cartilage is an avascular tissue, and because the develop-
ing growth plate is relatively hypoxic, hypoxia inducible 
factor (HIF)-1α is important for survival as chondrocytes 
transition to hypertrophy. Under normoxia, the cell content 
of HIF-1α, -2α , and -3α is low because of oxygen-dependent 
hydroxylation by prolyl-hydroxylases, resulting in ubiqui-
tination and degradation by the proteasome. In contrast, 
under hypoxia, prolyl-hydroxylase activity is reduced and 
the α subunits heterodimerize with the constitutive 
β-subunit members known as aryl hydrocarbon receptor 
nuclear translocators (ARNTs). HIFs are transcription 
factors that bind to hypoxia-responsive elements (HREs) in 
responsive genes. HIF-2α regulates endochondral ossifica-
tion processes by directly targeting HREs within the pro-
moters of the COL10A1, MMP13, and VEGFA genes.70

Vascular invasion of the hypertrophic zone is required  
for the replacement of calcified cartilage by bone. VEGF 
acts as an angiogenic factor to promote vascular invasion 
by specifically activating local receptors, including Flk1, 
which is expressed in endothelial cells in the perichon-
drium or surrounding soft tissues; neuropilin 1 (Npn1), 
which is expressed in late hypertrophic chondrocytes; or 
Npn2, which is expressed exclusively in the perichondrium. 
VEGF is expressed as three different isoforms: VEGF188,  
a matrix-bound form, is essential for metaphyseal vascu
larization, whereas the soluble form, VEGF120 (VEGFA), 
regulates chondrocyte survival and epiphyseal cartilage an-
giogenesis, and VEGF164 can be either soluble or matrix 
bound and may act directly on chondrocytes via Npn2. 
VEGF is released from the extra-cellular matrix by MMPs, 
including MMP-9, membrane-type (MT)1-MMP (MMP-
14), and MMP-13. MMP-9 is expressed by endothelial cells 
that migrate into the central region of the hypertrophic 
cartilage.71 MMP-14, which has a broader range of ex
pression than MMP-9, is essential for chondrocyte prolif-
eration and secondary ossification, whereas MMP-13 is 
found exclusively in late hypertrophic chondrocytes. Per-
lecan (Hspg2), a heparan sulfate proteoglycan in cartilage 
matrix, is required for vascularization in the growth plate 
through its binding to the VEGFR of endothelial cells, 
permitting osteoblast migration into the growth plate.72

A number of ADAM (a disintegrin and metalloprotein-
ase) proteinases are also emerging as important regulators 
in growth plate development. For example, ADAM10 is a 
principle regulator of Notch signaling, which modulates 
endochondral ossification via RBPjk in chondrocytes73 and 
promotes osteoclastogenesis at the chondro-osseous junc-
tion by regulating endothelial cell organization in the devel-
oping bone vasculature.74 ADAM17 is the critical proteinase 
mediating cellular shedding of TNF but also the epidermal 

with signaling molecules and chondrocyte cell surface 
receptors.52

Endochondral Ossification

The development of long bones from the cartilage anlagen 
occurs by a process termed endochondral ossification, which 
involves terminal differentiation of chondrocytes to the 
hypertrophic phenotype, cartilage matrix calcification, vas-
cular invasion, and ossification (see Figure 1-3).28,49,53 This 
process is initiated when the cells in the central region of 
the anlage begin to hypertrophy, increasing cellular fluid 
volume by almost 20 times. Ihh plays a pivotal role in regu-
lating endochondral bone formation by synchronizing peri-
chondrial maturation with chondrocyte hypertrophy, which 
is essential for initiating the process of vascular invasion. 
Ihh is expressed in prehypertrophic chondrocytes as they 
exit the proliferative phase and enter the hypertrophic 
phase, at which time they begin to express the hypertrophic 
chondrocyte marker, type X collagen and alkaline phos
phatase. These cells are responsible for laying down the 
cartilage matrix that subsequently undergoes mineraliza-
tion. Wnt/β-catenin signaling promotes chondrocyte matu-
ration by a BMP-2–mediated mechanism and induces 
chondrocyte hypertrophy partly by enhancing matrix metal-
loproteinase (MMP) expression and potentially by enhanc-
ing Ihh signaling and vascularization.54

Runx2, which serves as a positive regulatory factor in 
chondrocyte maturation to hypertrophy, is expressed in the 
adjacent perichondrium and in prehypertrophic chondro-
cytes, but less in late hypertrophic chondrocytes, overlap-
ping with Ihh, COL10A1, and BMP-6. IHH induces Gli 
transcription factors, which interact with Runx2 and BMP-
induced Smads, to regulate transcription and expression of 
COL10A1.55 An essential role for Runx2 in the process of 
chondrocyte hypertrophy is supported by the observation 
that the terminal differentiation is blocked in Runx2-
deficient mice. A member of the myocyte enhancer factor 
(MEF) 2 family, MEF2C, stimulates hypertrophy partly by 
increasing Runx2 expression.56 The class II histone deacety-
lase, HDAC4, prevents premature hypertrophy by directly 
suppressing the activities of Runx2 and MEF2C.57 HDAC4 
is in turn regulated by PTHrP and salt-inducible kinase 3 
(SIK3).58,59 Sox9,60 FOXA2 and FoxA3,61 Runx3,62 Zfp521,63 
and peroxisome proliferator-activated receptor γ (PPARγ64) 
are also important transcriptional regulators of chondrocyte 
hypertrophy. MMP-13, a downstream target of Runx2, is 
expressed by terminal hypertrophic chondrocytes, and 
MMP-13 deficiency results in significant interstitial colla-
gen accumulation, leading to the delay of endochondral 
ossification in the growth plate with increased length of the 
hypertrophic zone.65,66

Runx2 also is required for transcription activation of 
COL10A1, the gene encoding type X collagen, which is the 
major matrix component of the hypertrophic zone in the 
embryo and in the postnatal growth plate. Mutations in the 
COL10A1 gene are associated with the dwarfism observed 
in human chondrodysplasias. These mutations affect regions 
of the growth plate that are under great mechanical stress, 
and it has been suggested that the defect in skeletal growth 
may be due partly to alteration of the mechanical integrity 
of the pericellular matrix in the hypertrophic zone, although 
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vial microvasculature is already innervated by 8 weeks 
(stage 23) of gestation, around the time of joint cavitation. 
Evidence of neurotransmitter function is not found until 
much later, however, with the appearance of the sensory 
neuropeptide substance P at 11 weeks. The putative  
sympathetic neurotransmitter, neuropeptide Y, appears at  
13 weeks of gestation, along with the catecholamine-
synthesizing enzyme tyrosine hydroxylase. The finding that 
the Slit2 gene, which functions for the guidance of neuronal 
axons and neurons, is expressed in the mesenchyme and in 
peripheral mesenchyme of the limb bud (stages 23 to 28) 
suggests that innervation is an integral part of synovial joint 
development.81

DEVELOPMENT OF NONARTICULAR JOINTS

In contrast to articular joints, the temporomandibular joint 
develops slowly, with cavitation at a crown-rump length of 
57 to 75 mm (i.e., well into the fetal stage). This slow 
development may occur because this joint develops in the 
absence of a continuous blastema and involves the insertion 
between bone ends of a fibrocartilaginous disk that arises 
from muscular and mesenchymal derivatives of the first pha-
ryngeal arch. However, many of the same genes as those 
involved in articular joint development are involved in 
morphogenesis and growth of the temporomandibular 
joint.82

The development of other types of joints, such as synar-
throses, is similar to that of diarthrodial joints except that 
cavitation does not occur, and synovial mesenchyme is not 
formed. In these respects, synarthroses and amphiarthroses 
resemble the “fused” peripheral joints induced by paralyzing 
chicken embryos, and they may develop as they do because 
relatively little motion is present during their formation.83

The intervertebral disk consists of a semiliquid nucleus 
pulposus (NP) in the center, surrounded by a multilayered 
fibrocartilaginous annulus fibrosus (AF), which is sand-
wiched between the cartilaginous end plates (EPs).84 
Between the EPs lies the vertebral body consisting of the 
growth plate, which later disappears, and the primary and 
secondary centers of ossification that fuse together. The 
cells in the NP arise from the embryonic notochord and the 
notochord orchestrates somatogenesis, from which arises 
the ventral mesenchymal sclerotome that forms the AF of 
the intervertebral disk, as well as the vertebral bodies and 
ribs.84 The NP acts as the center for controlling cell dif-
ferentiation in the AF and EP through Shh signaling, which 
is regulated by WNT signaling and, in turn, promotes 
growth and differentiation through downstream transcrip-
tion factors, Brachyury and Sox9, and gene expression of 
extra-cellular matrix components.85,86 The proteoglycans 
and collagens expressed during development of the inter-
vertebral disk have been mapped and reflect the complex 
structure-function relationships that allow flexibility and 
resistance to compression in the spine.87

DEVELOPMENT OF ARTICULAR CARTILAGE

In the vertebrate skeleton, cartilage is the product of cells 
from three distinct embryonic lineages. Craniofacial carti-
lage is formed from cranial neural crest cells; the cartilage 
of the axial skeleton (intervertebral disks, ribs, and sternum) 

growth factor receptor (EGFR) ligands, including TGF-α. 
The EGFR signaling pathway induced by EGF and TGF-α 
plays a crucial role in the remodeling of the growth plate, 
where inactivation of EGFR results in the inability of hyper-
trophic chondrocytes to degrade the surrounding collagen 
matrix and to attract osteoclasts to invade and remodel the 
advancing growth plate under control of the osteoclast dif-
ferentiation factor receptor activator of nuclear factor κB 
(NFκB) ligand (RANKL).75,76 Mice lacking ADAM17 in 
chondrocytes (Adam17ΔCh) show an expanded hypertro-
phic zone in the growth plate,77 essentially phenocopying 
mice with defects in EGFR signaling in chondrocytes.75 
Tight regulation of EGFR signaling is important for carti-
lage and joint homeostasis, as shown in mice with cartilage-
specific deletion of the mitogen-inducible gene 6 (MIG-6), 
a scaffold protein that binds EGFR and targets it for inter-
nalization and degradation.78 These events of cartilage 
matrix remodeling and vascular invasion are required for 
the migration and differentiation of osteoclasts and osteo-
blasts, which remove the mineralized cartilage matrix and 
replace it with bone.

DEVELOPMENT OF THE JOINT CAPSULE 
AND SYNOVIUM

The interzone and the contiguous perichondrial envelope, 
of which the interzone is a part, contain the mesenchymal 
cell precursors that give rise to other joint components, 
including the joint capsule, synovial lining, menisci, intra-
capsular ligaments, and tendons.7-9 The external mesenchy-
mal tissue condenses as a fibrous capsule. The peripheral 
mesenchyme becomes vascularized and is incorporated as 
the synovial mesenchyme, which differentiates into a pseu-
domembrane at about the same time as cavitation begins in 
the central interzone (stage 23, approximately 8 weeks). 
The menisci arise from the eccentric portions of the articu-
lar interzone. In common usage, the term synovium refers to 
the true synovial lining and the subjacent vascular and 
areolar tissue, up to—but excluding—the capsule. Synovial 
lining cells can be distinguished as soon as the multiple 
cavities within the interzone begin to coalesce. At first, 
these cells are exclusively fibroblast-like (type B) cells.

As the joint cavity increases in size, synovial-lining cell 
layers expand by proliferation of fibroblast-like cells and 
recruitment of macrophage-like (type A) cells from the 
circulation. The synovial lining cells express the hyaluro-
nan receptor CD44 and UDPGD, the levels of which 
remain elevated after cavitation. This increased activity 
likely contributes to the high concentration of hyaluronan 
in joint fluids. Further synovial expansion results in the 
appearance of synovial villi at the end of the second month, 
early in the fetal period, which greatly increases the surface 
area available for exchange between the joint cavity and 
the vascular space. Cadherin 11 is an additional molecule 
expressed by synovial lining cells.79,80 It is essential for estab-
lishment of synovial lining architecture during develop-
ment, where its expression correlates with cell migration 
and tissue outgrowth of the synovial lining.

The role of innervation in the developing joint is not 
well understood. A dense capillary network develops in the 
subsynovial tissue, with numerous capillary loops that pen-
etrate into the true synovial lining layer. The human syno-
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ORGANIZATION AND PHYSIOLOGY OF THE 
MATURE JOINT

The unique structural properties and biochemical compo-
nents of diarthrodial joints make them extraordinarily 
durable load-bearing devices. The mature diarthrodial joint 
is a complex structure, influenced by its environment and 
mechanical demands (see Chapter 6). Joints have structural 
differences that are determined by their different functions. 
The shoulder joint, which demands an enormous range of 
motion, is stabilized primarily by muscles, whereas the hip, 
which requires motion and antigravity stability, has an 
intrinsically stable ball-and-socket configuration. The com-
ponents of the “typical” synovial joint are the synovium, 
muscles, tendons, ligaments, bursae, menisci, articular car-
tilage, and subchondral bone. The anatomy and physiology 
of muscles are described in detail in Chapter 5.

SYNOVIUM

The synovium, which lines the joint cavity, is the site of 
production of synovial fluid that provides the nutrition for 
the articular cartilage and lubricates the cartilage surfaces. 
The synovium is a thin membrane between the fibrous joint 
capsule and the fluid-filled synovial cavity that attaches to 
skeletal tissues at the bone-cartilage interface and does not 
encroach on the surface of the articular cartilage. It is 
divided into functional compartments: the lining region 
(synovial intima), the subintimal stroma, and the neurovas-
culature (Figure 1-5). The synovial intima, also termed 
synovial lining, is the superficial layer of the normal synovium 
that is in contact with the intra-articular cavity. The syno-
vial lining is loosely attached to the subintima, which con-
tains blood vessels, lymphatics, and nerves. Capillaries and 
arterioles generally are located directly underneath the 
synovial intima, whereas venules are located closer to the 
joint capsule.

A transition from loose to dense connective tissue occurs 
from the joint cavity to the capsule. Most cells in the normal 
subintimal stroma are fibroblasts and macrophages, although 

forms from paraxial mesoderm (somites); and the articular 
cartilage of the limbs is derived from the lateral plate  
mesoderm.1 In the developing limb bud, mesenchymal con-
densations, followed by chondrocyte differentiation and 
maturation, occur in digital zones, whereas undifferentiated 
mesenchymal cells in the interdigital web zones undergo 
cell death. Embryonic cartilage is destined for one of several 
fates: It can remain as permanent cartilage, as on the articu-
lar surfaces of bones, or it can provide a template for the 
formation of bones by endochondral ossification. During 
development, chondrocyte maturation expands from the 
central site of the original condensation, which forms the 
cartilage anlage resembling the shape of the future bone, 
toward the ends of the forming bones. During joint cavita-
tion, the peripheral interzone is absorbed into each adjacent 
cartilaginous zone, evolving into the articular surface. The 
articular surface is destined to become a specialized carti-
laginous structure that does not normally undergo vascular-
ization and ossification.4,8,9

More recent evidence indicates that postnatal matura-
tion of the articular cartilage involves an appositional 
growth mechanism originating from progenitor cells at the 
articular surface, rather than an interstitial mechanism. 
During formation of the mature articular cartilage, the dif-
ferentiated articular chondrocytes synthesize the cartilage-
specific matrix molecules, such as type II collagen and 
aggrecan (see Chapter 3). Through the processes described 
previously, the articular joint spaces are developed and 
lined on all surfaces either by cartilage or by synovial lining 
cells. These two different tissues merge at the enthesis, the 
region at the periphery of the joint where the cartilage 
melds into bone, and where ligaments and the capsule are 
attached. In the postnatal growth plate, the differentiation 
of the perichondrium also is linked to the differentiation of 
the chondrocytes in the epiphysis to form the different 
zones of the growth plate, contributing to longitudinal bone 
growth. Once the growth plate closes in the human joint, 
the adult articular cartilage must be maintained by the resi-
dent chondrocytes with low-turnover production of matrix 
proteins.88,89

Figure 1-5  A, Schematic representation of normal human synovium. The intima contains specialized fibroblasts expressing vascular cell adhesion 
molecule-1 (VCAM-1) and uridine diphosphoglucose (UDPG) and specialized macrophages expressing FcγRIIIa. The deeper subintima contains unspe-
cialized counterparts. B, Microvascular endothelium in human synovium contains receptors for the vasodilator/growth factor substance P. Silver grains 
represent specific binding of [125I]Bolton Hunter–labeled substance P to synovial microvessels (arrows). Arrowheads indicate the synovial surface. 
Emulsion-dipped in vitro receptor autoradiography preparations with hematoxylin and eosin counterstain. Calibration bar = 1 µm. (A, from Edwards 
JCW: Fibroblast biology: development and differentiation of synovial fibroblasts in arthritis. Arthritis Res 2:344–347, 2000.)
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ment. The op/op osteopetrotic mouse that is deficient in 
macrophages because of an absence of macrophage colony-
stimulating factor also lacks synovial macrophages, suggest-
ing that type A synovial cells are of a common lineage with 
other tissue macrophages. Although they represent only a 
small percentage of the cells in the normal synovium, the 
macrophages are recruited from the circulation during syno-
vial inflammation, partly from subchondral bone marrow 
through vascular channels near the enthesis.

The type B, fibroblast-like synoviocytes contain fewer 
vacuoles and filopodia than type A cells and have abundant 
protein-synthetic organelles.92 Similar to other fibroblasts, 
lining cells express genes encoding extra-cellular matrix 
components, including collagens, sulfated proteoglycans, 
fibronectin, fibrillin-1, and tenascin, and they express intra-
cellular and cell surface molecules such as vimentin and 
CD90 (Thy-1). They have the potential to proliferate, 
although proliferation markers are rarely seen in normal 
synovium. In contrast to stromal fibroblasts, synovial intimal 
fibroblasts express UDPGD and synthesize hyaluronan, an 
important constituent of synovial fluid.90 They also synthe-
size lubricin, which, together with hyaluronan, is necessary 
for the low-friction interaction of cartilage surfaces in the 
diarthrodial joint. Synovial lining cells bear abundant mem-
brane peptidases on their surface that are capable of degrad-
ing a wide range of regulatory peptides, such as substance P 
and angiotensin II.

Normal synovial lining cells also express a rich array of 
adhesion molecules, including CD44, the principal receptor 
for hyaluronan; vascular cell adhesion molecule (VCAM)-
1; intercellular adhesion molecule (ICAM)-1; and CD55 
(decay-accelerating factor).92 They are essential for cellular 
attachment to specific matrix components in the synovial 
lining region, preventing loss into the synovial cavity  
of cells subjected to deformation and shear stresses during 
joint movement. Adhesion molecules such as VCAM-1 and 
ICAM-1 potentially are involved in the recruitment of 
inflammatory cells during the evolution of arthritis. Cad-
herins mediate cell-cell adhesion between adjacent cells of 
the same type. The identification of cadherin-11 as a key 
adhesion molecule that regulates the formation of the syno-
vial lining during development and the synoviocyte func-
tion postnatally has provided the opportunity to examine 
its role in inflammatory joint disease.79 Cadherin-11 is 
highly expressed in fibroblast-like cells at the pannus-
cartilage interface in rheumatoid synovium, where it plays 
a role in the invasive properties of the synovial fibroblasts,97 
and treatment with a cadherin-11 antibody or a cadherin-11 
fusion protein reduces synovial inflammation and cartilage 
erosion in an animal model of arthritis.80

Synovial Vasculature

The subintimal synovium contains blood vessels, providing 
the blood flow that is required for solute and gas exchange 
in the synovium itself and for the generation of synovial 
fluid.98 The avascular articular cartilage also depends on 
nutrition in the synovial fluid, derived from the synovial 
vasculature. The vascularized synovium behaves similar  
to an endocrine organ, generating factors that regulate  
synoviocyte function and serving as a selective gateway  
that recruits cells from the circulation during stress and 

adipocytes and occasional mast cells are present.90 These 
compartments are not circumscribed by basement mem-
branes but nonetheless have distinct functions; they are 
separated from each other by chemical barriers, such as 
membrane peptidases, which limit the diffusion of regula-
tory factors between compartments. Synovial compartments 
are unevenly distributed within a single joint. Vascularity  
is high at the enthesis where synovium, ligament, and car-
tilage coalesce. Far from being a homogeneous tissue in 
continuity with the synovial cavity, synovium is highly het-
erogeneous, and synovial fluid may be poorly representative 
of the tissue-fluid composition of any synovial tissue com-
partment. In rheumatoid arthritis, the synovial lining of 
diarthrodial joints is the site of the initial inflammatory 
process. This lesion is characterized by proliferation of the 
synovial lining cells, increased vascularization, and infiltra-
tion of the tissue by inflammatory cells, including B and T 
lymphocytes, plasma cells, and activated macrophages (see 
Chapter 69).91-94 The roles of synovitis and synovial angio-
genesis are also of current interest in relation to the progres-
sion and severity of joint damage in osteoarthritis (OA).95,96

Synovial Lining

The synovial lining, a specialized condensation of mesen-
chymal cells and extra-cellular matrix, is located between 
the synovial cavity and stroma. In normal synovium, the 
lining layer is two to three cells deep, although intra-
articular fat pads usually are covered by only a single layer 
of synovial cells, and ligaments and tendons are covered by 
synovial cells that are widely separated. At some sites, lining 
cells are absent, and the extra-cellular connective tissue 
constitutes the lining layer. Such “bare areas” become 
increasingly frequent with advancing age. Although the 
synovial lining is often referred to as the synovial mem-
brane, the term membrane is more correctly reserved for 
endothelial and epithelial tissues that have basement mem-
branes, tight intercellular junctions, and desmosomes. 
Instead, synovial lining cells lie loosely in a bed of hyaluro-
nate interspersed with collagen fibrils; this is the macromo-
lecular sieve that imparts the semipermeable nature of the 
synovium. The absence of any true basement membrane is 
a major determinant of joint physiology.

Early electron microscopic studies characterized lining 
cells as macrophage-derived type A and fibroblast-derived 
type B cells. High UDPGD activity and CD55 are used to 
distinguish type B synovial cells, whereas nonspecific ester-
ase and CD68 typify type A cells. Normal synovium is lined 
predominantly by fibroblast-like synoviocytes, whereas 
macrophage-like synovial cells compose only 10% to 20% 
of lining cells (see Figure 1-5).92

Type A, macrophage-like synovial cells contain vacu-
oles, a prominent Golgi apparatus, and filopodia, but they 
have little rough endoplasmic reticulum. These cells express 
numerous cell surface markers of the monocyte-macrophage 
lineage, including CD16, CD45, CD11b/CD18, CD68, 
CD14, CD163, and the immunoglobulin (Ig)G Fc receptor, 
FcγRIIIa.90,92 Synovial intimal macrophages are phagocytic 
and may provide a mechanism by which particulate matter 
can be cleared from the normal joint cavity. Similar to other 
tissue macrophages, these cells have little capacity to pro-
liferate and are likely localized to the joint during develop-
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vasculature include the presence of inducible nitric oxidase 
synthase–independent 3-nitrotyrosine, a reaction product 
of peroxynitrite, and the localization of the synoviocyte-
derived CXCL12 chemokine on heparan sulfate receptors 
on endothelial cells, suggesting physiologic roles for these 
molecules in normal vascular function.

JOINT INNERVATION

Dissection studies have shown that each joint has a dual 
nerve supply, consisting of specific articular nerves that pen-
etrate the capsule as independent branches of adjacent 
peripheral nerves and articular branches that arise from 
related muscle nerves. The definition of joint position and 
the detection of joint motion are monitored separately and 
by a combination of multiple inputs from different receptors 
in varied systems. Nerve endings in muscle and skin and in 
the joint capsule mediate sensation of joint position and 
movement. Normal joints have afferent (sensory) and effer-
ent (motor) innervations consisting of both unmyelinated 
and sensory thick myelinated A fibers in ligaments, fibrous 
capsule, menisci and adjacent periosteum, where they are 
thought to function primarily as sensors for pressure and 
movements. Sensory A and C fibers terminate as free nerve 
endings in the fibrous capsule, adipose tissue, ligaments, 
menisci, and the adjacent periosteum, where they are 
thought to act as nociceptors and contribute to the regula-
tion of synovial microvascular function.

In normal synovium a dense network of fine unmyelin-
ated nerve fibers follow the courses of blood vessels and 
extend into the synovial lining layers. These nerve fibers do 
not have specialized endings and are slow-conducting fibers; 
they may transmit diffuse, burning, or aching pain sensa-
tion. Sympathetic nerve fibers surround blood vessels, par-
ticularly in the deeper regions of normal synovium, and 
contain and release classic neurotransmitters, such as nor-
epinephrine, and neuropeptides that are markers of sensory 
nerves including substance P, CGRP, neuropeptide Y, and 
vasoactive intestinal peptide.98,104

Afferent nerves containing substance P also have an 
efferent role in the synovium. Substance P is released from 
peripheral nerve terminals into the joint, and specific, G 
protein–coupled receptors for substance P are localized to 
microvascular endothelium in normal synovium. Abnor-
malities of articular innervation that are associated with 
inflammatory arthritis may contribute to the failure of  
synovial inflammation to resolve. Excessive local neuropep-
tide release may result in the loss of nerve fibers as a result 
of neuropeptide depletion. Synovial tissue proliferation 
without concomitant growth of new nerve fibers may lead 
to an apparent partial denervation of synovium. Studies in 
patients suggest that free nerve endings containing sub-
stance P may modulate inflammation and the pain pathway 
in OA. Afferent nerve fibers from the joint play an impor-
tant role in the reflex inhibition of muscle contraction. 
Trophic factors generated by motor neurons, such as the 
neuropeptide CGRP, are important in maintaining muscle 
bulk and a functional neuromuscular junction. Decreases in 
motor neuron trophic support during articular inflammation 
probably contribute to muscle wasting.

Mechanisms of joint pain have been reviewed in  
detail.105-107 In a noninflamed joint, most sensory nerve 

inflammation. Finally, synovial blood flow plays an impor-
tant role in regulating intra-articular temperature.

The synovial vasculature can be divided, on morphologic 
and functional grounds, into arterioles, capillaries, and 
venules. In addition, lymphatics accompany arterioles and 
larger venules.90 Arterial and venous networks of the joint 
are complex and are characterized by arteriovenous anasto-
moses that communicate freely with blood vessels in peri-
osteum and periarticular bone. As large synovial arteries 
enter the deep layers of the synovium near the capsule, they 
give off branches, which bifurcate again to form “microvas-
cular units” in the subsynovial layers. The synovial lining 
region, the surfaces of intra-articular ligaments, and the 
entheses (in the angle of ligamentous insertions into bone) 
are particularly well vascularized.99

The distribution of synovial vessels, which were formed 
largely as a result of vasculogenesis during development of 
the joint, displays considerable plasticity. Vasculogenesis is 
a dynamic process that depends on the cellular interactions 
with regulatory factors and the extra-cellular matrix, which 
are also important in angiogenesis. In inflammatory arthri-
tis, the density of blood vessels decreases relative to the 
growing synovial mass, creating a hypoxic and acidotic 
environment.100,101 Angiogenic factors such as VEGF, acting 
via VEGF receptors 1 and 2 (Flt1 and Flk2), and basic FGF 
promote proliferation and migration of endothelial cells, a 
process that is facilitated by matrix-degrading enzymes and 
adhesion molecules such as integrin αvβ3 and E-selectin, 
expressed by activated endothelial cells. Vessel maturation 
is facilitated by angiopoietin-1 acting via the Tie-2 receptor. 
The angiogenic molecules are restricted to the capillary 
epithelium in normal synovium, but their levels are ele-
vated in inflamed synovium in perivascular sites and areas 
remote from vessels.102,103

Regulation of Synovial Blood Flow

Synovial blood flow is regulated by intrinsic (autocrine and 
paracrine) and extrinsic (neural and humoral) systems. 
Locally generated factors, such as the peptide vasoconstric-
tors angiotensin II and endothelin-1, act on adjacent arte-
riolar smooth muscle to regulate regional vascular tone.99 
Normal synovial arterioles are richly innervated by sympa-
thetic nerves containing vasoconstrictors, such as norepi-
nephrine and neuropeptide Y, and by “sensory” nerves  
that also play an efferent vasodilatory role by releasing  
neuropeptides, such as substance P and calcitonin gene–
related peptide (CGRP). Arterioles regulate regional blood 
flow. Capillaries and postcapillary venules are sites of  
fluid and cellular exchange. Correspondingly, regulatory 
systems are differentially distributed along the vascular axis. 
Angiotensin-converting enzyme, which generates angio-
tensin II, is localized predominantly in arteriolar and capil-
lary endothelia and decreases during inflammation. Specific 
receptors for angiotensin II and for substance P are abun-
dant on synovial capillaries, with lower densities on adja-
cent arterioles. Dipeptidyl peptidase IV, a peptide-degrading 
enzyme, is specifically localized to the cell membranes  
of venular endothelium. The synovial vasculature is not 
only functionally compartmentalized from the surrounding 
stroma but also highly specialized along its arteriovenous 
axis. Other unique characteristics of the normal synovial 
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tin and tenascin C, as well as MMPs and their inhibitors, 
which can contribute to the breakdown and repair of tendon 
components.113 Collagen fibrils in tendon are composed pri-
marily of type I collagen with some type III collagen, but 
there are regional differences in the distribution of other 
matrix components. The compressed region contains the 
small proteoglycans, biglycan, decorin, fibromodulin, and 
lumican, as well as the large proteoglycan versican. The 
major components in the tensile region of the tendon are 
decorin, microfibrillar type VI collagen, fibromodulin,  
and the proline and arginine-rich end leucine-rich repeat 
protein (PRELP). The presence of cartilage oligomeric 
matrix protein, aggrecan, and biglycan and collagen types 
II, IX, and XI is indicative of fibrocartilage. The collagen 
fiber orientation at the tendon-to-bone enthesis is impor-
tant for maintaining microarchitecture by reducing the 
stress concentrations and shielding the outward splay of  
the insertion from the highest stresses.119 Understanding the 
structure has implications for tendon repair because motion 
between a tendon graft and bone tunnel may impair early 
graft incorporation and lead to tunnel widening secondary 
to bone resorption.120,121

Failure of the muscle-tendon apparatus is rare; when it 
does occur, it is the result of enormous, quickly generated 
forces across a joint and usually occurs near the tendon 
insertion into bone.122 Factors that may predispose to tendon 
failure are aging processes, including loss of extra-cellular 
water and the increase in intermolecular cross-links of  
collagen; tendon ischemia; iatrogenic factors, including 
injection of glucocorticoids; and deposition of calcium 
hydroxyapatite crystals within the collagen bundles. Altera-
tions in collagen fibril composition and structure are associ-
ated with tendon degeneration during aging and may 
predispose to OA. Understanding the contributions in 
tendon development of Sox9, scleraxis, Mohawk, members 
of the TGF-β/BMP superfamily, including GDF-5, and 
Wnt/β-catenin, and Ihh signaling123,124 may point to strate-
gies for tendon repair.122,125

LIGAMENTS

Ligaments, which provide a stabilizing bridge between 
bones, permit a limited range of movement.126 Ligaments 
often are recognized only as hypertrophied components of 
the fibrous joint capsule and are structurally similar to 
tendons.127 Although the fibers are oriented parallel to the 
longitudinal axis of both tissues, the collagen fibrils in liga-
ments are nonparallel and arranged in fibers that are ori-
ented roughly along the long axis in a wavy, undulating 
pattern, or “crimp,” which can straighten in response to 
load. Some ligaments have a higher ratio of elastin to col-
lagen (1 : 4) than do tendons (1 : 50), which permits a greater 
degree of stretch. Ligaments also have larger amounts of 
reducible cross-links, more type III collagen, slightly less 
total collagen, and more glycosaminoglycans compared with 
tendons. The cells in ligaments seem to be more metaboli-
cally active than the cells in tendons and have more plump 
cellular nuclei and higher DNA content.

During postnatal growth, the development of ligament 
attachment zones involves changes in the ratios and distri-
bution of types I, III, and V collagen and the synthesis of 
type II collagen and proteoglycans by fibrochondrocytes 

fibers do not respond to movement within the normal range; 
these fibers are referred to as silent nociceptors. In an acutely 
inflamed joint, however, these nerve fibers become sensi-
tized by mediators such as bradykinin, neurokinin 1, and 
prostaglandins (peripheral sensitization), and as a result, 
normal movements induce pain. Pain sensation is upregu-
lated or downregulated further in the central nervous 
system, at the level of the spinal cord and in the brain, by 
central sensitization and “gating” of nociceptive input. 
Although the normal joint may respond predictably to 
painful stimuli, a poor correlation often exists between 
apparent joint disease and perceived pain in persons with 
chronic arthritis. Pain associated with joint movements 
within the normal range is a characteristic symptom 
described by patients with chronically inflamed joints 
caused by rheumatoid arthritis. Chronically inflamed joints 
may not be painful at rest, however, unless they are acutely 
inflamed.

The expression of substance P and CGRP are upregu-
lated by nerve growth factor (NGF), which belongs to a 
family of neurotrophins that regulated neuronal growth 
during embryonic development.108 Postnatally, NGF and 
the neurotrophins regulate neuronal regeneration and pain 
perception. In addition to promoting nerve growth and 
mediating pain perception, NGF can act together with 
VEGF to promote blood vessel formation. Angiogenesis and 
nerve growth thus are linked by common pathways involv-
ing NGF, VEGF, and neuropeptides such as CGRP, neuro-
peptide Y, and semiphorins.98,109,110

TENDONS

Tendons are functional and anatomic bridges between 
muscle and bone.111,112 Tendons focus the force of a large 
mass of muscle into a localized area on bone and, by split-
ting to form numerous insertions, may distribute the force 
of a single muscle to different bones. Tendons are formed of 
longitudinally arranged collagen fibrils embedded in an 
organized, hydrated proteoglycan matrix with blood vessels, 
lymphatics, and fibroblasts.113 Cross-links between adjacent 
collagen chains or molecules contribute to the tensile 
strength of the tendon. Tendon collagen fibrillogenesis is 
initiated during early development by a highly ordered 
process of alignment involving the actin cytoskeleton and 
cadherin-11.114,115 Many tendons, particularly those with a 
large range of motion, run through vascularized, discontinu-
ous sheaths of collagen lined with mesenchymal cells resem-
bling synovium. Gliding of tendons through their sheaths 
is enhanced by hyaluronic acid produced by the lining cells. 
Tendon movement is essential for the embryogenesis and 
maintenance of tendons and their sheaths.116,117 Degenera-
tive changes appear in tendons, and fibrous adhesions form 
between tendons and sheaths when inflammation or surgi-
cal incision is followed by long periods of immobilization. 
At the myotendinous junction, recesses between muscle cell 
processes are filled with collagen fibrils, which blend into 
the tendon. At its other end, collagen fibers of the tendon 
typically blend into fibrocartilage, mineralize, and merge 
into bone through a fibrocartilaginous transition zone 
termed the enthesis, or insertion site.118

Tendon fibroblasts synthesize and secrete collagens, pro-
teoglycans, and other matrix components, such as fibronec-
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fibrocartilage, however, without nerves or lymphatics, con-
sisting of cells surrounded by an abundant extra-cellular 
matrix of collagens, chondroitin sulfate, dermatan sulfate, 
and hyaluronic acid. Tears in this central zone heal poorly, 
if at all.

Collagen constitutes 60% to 70% of the dry weight of 
the meniscus and is mostly type I collagen, with lesser 
amounts of types III, V, and VI. A small quantity of cartilage-
specific type II collagen is localized to the inner, avascular 
portion of the meniscus. Collagen fibers in the periphery are 
mostly circumferentially oriented, with radial fibers extend-
ing toward the central portion. Elastin content is around 
0.6%, and proteoglycan content is around 2% to 3% dry 
weight. Aggrecan and decorin are the major proteoglycans 
in the adult meniscus. Decorin is the predominant proteo-
glycan synthesized in the meniscus from young persons, 
whereas the relative proportion of aggrecan synthesis 
increases with age. Although the capacity of the meniscus 
to synthesize sulfated proteoglycans decreases after the 
teenage years, the age-related increases in expression of 
decorin and aggrecan mRNA suggest that the resident cells 
are able to respond quickly to alterations in the biome-
chanical environment.

The meniscus was defined originally as a fibrocartilage, 
based on the rounded or oval shape of most of the cells and 
the fibrous microscopic appearance of the extra-cellular 
matrix. Based on molecular and spatial criteria, three dis-
tinct populations of cells are recognized in the meniscus of 
the knee joint132:

1.	 The fibrochondrocyte is the most abundant cell in the 
middle and inner meniscus, synthesizing primarily 
type I collagen and relatively small amounts of type 
II and III collagens. It is round or oval in shape and 
has a pericellular filamentous matrix containing type 
VI collagen.

2.	 The fibroblast-like cells lack a pericellular matrix and 
are located in the outer portion of the meniscus. They 
are distinguished by long, thin, branching cytoplas-
mic projections that stain for vimentin. They make 
contact with other cells in different regions via con-
nexin 43–containing gap junctions. The presence  
of two centrosomes, one associated with a primary 
cilium, suggests a sensory, rather than motile, func-
tion that could enable the cells to respond to circum-
ferential tensile loads rather than compressive loads.

3.	 The superficial zone cells have a characteristic fusi-
form shape with no cytoplasmic projections. The 
occasional staining of these cells in the uninjured 
meniscus with α-actin and their migration into sur-
rounding wound sites suggest that they are specialized 
progenitor cells that may participate in a remodeling 
response in the meniscus and surrounding tissues.

Cell lineage tracing and gene profiling studies in mouse 
embryos have provided insight into the complexity of the 
meniscus and how it was formed.133,134 Researchers have 
considerable interest in using this information to develop 
new strategies for meniscal generation.

MATURE ARTICULAR CARTILAGE

Articular cartilage is a specialized connective tissue that 
covers the weight-bearing surfaces of diarthrodial joints. 

that develop from ligament cells at the attachment zone. 
Attachment zones are believed to permit gradual transmis-
sion of the tensile force between ligament and bone.

Ligaments play a major role in the passive stabilization 
of joints, aided by the capsule and, when present, menisci. 
In the knee, the collateral and cruciate ligaments provide 
stability when there is little or no load on the joint. As 
compressive load increases, there is an increasing contribu-
tion to stability from the joint surfaces themselves and the 
surrounding musculature. Injured ligaments generally heal, 
and structural integrity is restored by contracture of the 
healing ligament so it can act again as a stabilizer of the 
joint.

BURSAE

The many bursae in the human body facilitate gliding of 
one tissue over another, much as a tendon sheath facilitates 
movement of its tendon. Bursae are closed sacs, lined 
sparsely with mesenchymal cells that are similar to synovial 
cells, but they are generally less well vascularized than 
synovium. Most bursae differentiate concurrently with 
synovial joints during embryogenesis. Throughout life, 
trauma or inflammation may lead to the development of 
new bursae, hypertrophy of previously existing ones, or 
communication between deep bursae and joints. In patients 
with rheumatoid arthritis, communications may exist 
between the subacromial bursae and the glenohumeral 
joint, between the gastrocnemius or semimembranosus 
bursae and the knee joint, and between the iliopsoas bursa 
and the hip joint. It is unusual, however, for subcutaneous 
bursae, such as the prepatellar bursa or olecranon bursa, to 
develop communication with the underlying joint.128

MENISCI

The meniscus, a fibrocartilaginous, wedge-shaped structure, 
is best developed in the knee but also is found in the acro-
mioclavicular and sternoclavicular joints, the ulnocarpal 
joint, and the temporomandibular joint. Until more 
recently, menisci were thought to have little function and 
a quiescent metabolism with no capability of repair, although 
early observations indicated that removal of menisci from 
the knee could lead to premature arthritic changes in the 
joint. Evidence from arthroscopic studies of patients with 
anterior cruciate ligament insufficiency indicates that dis-
ease of the medial meniscus correlates with that of the 
medial femoral cartilage. The meniscus is now considered 
to be an integral component of the knee joint that has 
important functions in joint stability, load distribution, 
shock absorption, and lubrication.129,130

The microanatomy of the meniscus is complex and age 
dependent.131 The characteristic shapes of the lateral and 
the medial menisci are achieved early in prenatal develop-
ment. At that time, the menisci are cellular and highly 
vascularized; with maturation, vascularity decreases progres-
sively from the central margin to the peripheral margin. 
After skeletal maturity, the peripheral 10% to 30% of the 
meniscus remains highly vascularized by a circumferential 
capillary plexus and is well innervated. Tears in this vascu-
larized peripheral zone may undergo repair and remodeling. 
The central portion of the mature meniscus is an avascular 
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The principal functions of cartilage layers covering bone 
ends are to permit low-friction, high-velocity movement 
between bones, to absorb the transmitted forces associated 
with locomotion, and to contribute to joint stability. Lubri-
cation by synovial fluid provides frictionless movement  
of the articulating cartilage surfaces. Chondrocytes (see 
Chapter 3) are the single cellular component of adult 
hyaline articular cartilage and are responsible for synthesiz-
ing and maintaining the highly specialized cartilage matrix 
macromolecules. The cartilage extra-cellular matrix is com-
posed of an extensive network of collagen fibrils, which 
confers tensile strength, and an interlocking mesh of pro-
teoglycans, which provides compressive stiffness through 
the ability to absorb and extrude water. Numerous other 
noncollagenous proteins also contribute to the unique prop-
erties of cartilage (Table 1-1). Histologically, the tissue 
appears to be fairly homogeneous and clearly distinguished 
from the calcified cartilage and underlying subchondral 
bone (Figure 1-6). However, this appearance is misleading 
because significant topographical and regional differences 
exist in the molecular organization and composition of the 
articular cartilage, as described in Chapter 3.

SUBCHONDRAL BONE

Subchondral bone is not a homogeneous tissue and consists 
of a layer of compact cortical bone and an underlying system 
of cancellous bone organized into a trabecular network.135,136 
The subchondral bone is separated from the overlying artic-
ular cartilage by a thin zone of calcified cartilage. The 
so-called tidemark defines the transition zone between the 
articular and calcified cartilage. This complex biocomposite 
of bone and calcified cartilage provides an optimal system 
for distributing loads that are transmitted from the weight-
bearing surfaces that are lined by the hyaline articular car-
tilage. Although the tidemark was originally believed to 
form a barrier to fluid flow, evidence shows that biologically 
active molecules can transit this zone, providing a mecha-
nism by which products produced by chondrocytes or bone 
cells can influence the activity of the other cell type.137,138 
In addition, further communication is provided via products 
released from vascular elements in channels that penetrate 
the calcified cartilage from the adjacent marrow space.139 
Under physiologic conditions the composition and struc-
tural organization of the subchondral bone and calcified 
cartilage are optimally adapted to transfer loads, but several 
conditions can lead to changes in the structural and func-
tional properties of these tissues.

The subchondral bone undergoes continuous structural 
reorganization throughout postnatal life. These alterations 
are mediated by the coordinated activity of bone-resorbing 
osteoclasts and bone-forming osteoblasts that remodel and 
adapt the bone in response to local biomechanical and 
biological signals.140 Several lines of evidence have estab-
lished that osteocytes are the bone cell type that plays a key 
role in regulating the bone remodeling process.141,142 Osteo-
cytes are distributed throughout the mineralized bone 
matrix, forming an interconnected network that is ideally 
positioned to sense and respond to local and systemic 
stimuli. These effects are mediated via both cell-cell inter-
actions with osteoclasts and osteoblasts but also via signal-
ing through the release of soluble mediators. These products 

include RANKL, the essential regulator of osteoclast dif-
ferentiation and activity and its inhibitor osteoprotegerin 
(OPG),143,144 as well as additional mediators, including 
prostanoids, nitric oxide, nucleotides, and a broad spectrum 
of growth factors and cytokines.145 In addition to these 
factors, osteocytes also produce sclerostin and Dickkopf-
related protein 1 (DKK-1), which are potent inhibitors of 
the Wnt/β-catenin pathway that contributes to the regula-
tion of osteoblast-mediated bone formation.146 The release 
of RANKL and OPG and the Wnt pathway regulators, 
DKK-1 and sclerostin, play a major role in controlling the 

TABLE 1-1  Extra-cellular Matrix Components of Articular 
Cartilage*

Collagens
Type II
Type IX
Type XI
Type VI
Types XII, XIV
Type X (hypertrophic chondrocyte)

Proteoglycans
Aggrecan
Versican
Link protein
Biglycan (DS-PGI)
Decorin (DS-PGII)
Epiphycan (DS-PGIII)
Fibromodulin
Lumican
Proline/arginine-rich and leucine-rich repeat protein (PRELP)
Chondroadherin
Perlecan
Lubricin (SZP)

Other Noncollagenous Proteins (Structural)
Cartilage oligomeric matrix protein (COMP) or thrombospondin-5
Thrombospondin-1 and thrombospondin-3
Cartilage matrix protein (matrilin-1) and matrilin-3
Fibronectin
Tenascin-C
Cartilage intermediate layer protein (CILP)
Fibrillin
Elastin

Other Noncollagenous Proteins (Regulatory)
Glycoprotein (gp)-39, YKL-40
Matrix Gla protein (MGP)
Chondromodulin-I (SCGP) and chondromodulin-II
Cartilage-derived retinoic acid–sensitive protein (CD-RAP)
Growth factors

Cell Membrane–Associated Proteins
Integrins (α1β1, α2β1, α3β1, α5β1, α6β1, α10β1, αvβ3, αvβ5)
Anchorin CII (annexin V)
Cell determinant 44 (CD44)
Syndecan-1, 3, and 4
Discoidin domain receptor 2

*The collagens, proteoglycans, and other noncollagenous proteins in the 
cartilage matrix are synthesized by chondrocytes at different stages during 
development and growth of cartilage. In mature articular cartilage, 
proteoglycans and other noncollagen proteins are turned over slowly, 
whereas the collagen network is stable unless exposed to proteolytic 
cleavage. Proteins that are associated with chondrocyte cell membranes 
also are listed because they permit specific interactions with extra-cellular 
matrix proteins. The specific structure-function relationships are discussed 
in Chapter 3 and described in Table 3-1.

DS-PG, Dermatan sulfate proteoglycan; SCGP, small cartilage–derived 
glycoprotein; SZP, superficial zone protein; YKL-40, 40KD chitinase 3-like 
glycoprotein.
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SYNOVIAL FLUID AND NUTRITION OF 
JOINT STRUCTURES

The volume and composition of synovial fluid are deter-
mined by the properties of the synovium and its vasculature. 
Fluid in normal joints is present in small quantities (2.5 mL 
in the normal knee) sufficient to coat the synovial surface 
but not sufficient to separate one surface from the other. 
Tendon sheath fluid and synovial fluid are biochemically 
similar. Both are essential for the nutrition and lubrication 
of adjacent avascular structures, including tendons and 
articular cartilage, and for limiting adhesion formation and 
maintaining movement. Characterization and measurement 
of synovial fluid constituents have proved useful for the 
identification of locally generated regulatory factors, markers 
of cartilage turnover, and the metabolic status of the joint, 
as well as for the assessment of the effects of therapy on 
cartilage homeostasis. However, interpretation of such data 
requires an understanding of the generation and clearance 
of synovial fluid and its various components.

GENERATION AND CLEARANCE OF 
SYNOVIAL FLUID

Synovial fluid concentrations of a protein represent the net 
contributions of synovial blood flow, plasma concentration, 
microvascular permeability, and lymphatic removal and its 
production and consumption within the joint space. Syno-
vial fluid is a mixture of a protein-rich ultrafiltrate of plasma 
and hyaluronan synthesized by synoviocytes.91 Generation 
of this ultrafiltrate depends on the differences between 
intracapillary and intra-articular hydrostatic pressures and 

adaptation of the subchondral bone to alterations in 
mechanical loading in both physiologic and pathologic 
conditions.

The maintenance of the structural and functional integ-
rity of articular cartilage and subchondral bone under physi-
ologic loading is evidence of the unique and intimate 
interaction of these tissues, but controversy remains with 
regard to the relationship between them in the pathogenesis 
of OA.147 Radin and Rose148 proposed that the initiation of 
early alterations in articular cartilage is caused by an increase 
in subchondral bone stiffness that adversely affects the func-
tion of articular chondrocytes, leading to deterioration in 
the properties of the articular cartilage and susceptibility to 
mechanical disruption. Alternatively, it has been proposed 
that changes in subchondral bone stiffness may be a result 
of cartilage deterioration.149-151 The alterations in subchon-
dral bone and cartilage that accompany the osteoarthritic 
process are not restricted to these tissues but also affect the 
zone of calcified cartilage, where there is evidence of vascu-
lar invasion, advancement of the calcified cartilage, and 
duplication of the tidemark that contributes to a decrease 
in articular cartilage thickness.152,153 The penetration of the 
vascular channels from the subchondral bone and calcified 
cartilage into the deep zones of the articular cartilage permit 
exchange of fluids and soluble mediators between these 
tissues, providing an additional mechanism by which the 
subchondral bone and articular cartilage can affect the 
activity of cells within each of these tissues. These structural 
alterations in the articular cartilage and periarticular bone 
may also lead to modification of the contours of the adja-
cent articulating surfaces, further contributing to the adverse 
biomechanical environment.148,154-156

Figure 1-6  Representative sections of normal human adult articular cartilage, showing nearly the same field in plain (A) and polarized (B) light. Note 
the clear demarcation of the articular cartilage from the calcified cartilage below the tidemark and the underlying subchondral bone. (Hematoxylin-
eosin stain; original magnification ×60.) (Courtesy Edward F. DiCarlo, MD, Pathology Department, Hospital for Special Surgery, New York, N.Y.)

BA
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SYNOVIAL FLUID AS AN INDICATOR OF 
JOINT FUNCTION

In the absence of a basement membrane separating synovium 
or cartilage from synovial fluid, measurements of synovial 
fluid may reflect the activity of these tissues. A wide range 
of regulatory factors and products of synoviocyte metabo-
lism and cartilage breakdown may be generated locally 
within the joint, resulting in marked differences between 
the composition of synovial fluid and plasma ultrafiltrate. 
Because little capacity exists for the selective concentration 
of solutes in synovial fluid, solutes that are present at higher 
concentrations than in plasma are probably synthesized 
locally. It is necessary, however, to know the local clearance 
rate to determine whether the solutes present in synovial 
fluid at lower concentrations than in plasma are generated 
locally.157,158 Because clearance rates from synovial fluid may 
be slower than those from plasma, synovial fluid levels of 
drugs or urate may remain elevated after plasma levels have 
declined.

Plasma proteins are less effectively filtered in inflamed 
synovium, perhaps because of increased size of endothelial 
cell fenestrations or because interstitial hyaluronate-protein 
complexes are fragmented by enzymes associated with  
the inflammatory process. Concentrations of proteins, such 
as α2 macroglobulin (the principal proteinase inhibitor 
of plasma), fibrinogen, and IgM, are elevated in inflamma-
tory synovial fluids (see Figure 1-7), as are associated 
protein-bound cations. Membrane peptidases may limit the 

between colloid osmotic pressures of capillary plasma and 
synovial tissue fluid. Fenestrations (i.e., small pores covered 
by a thin membrane) in the synovial capillaries and the 
macromolecular sieve of hyaluronic acid facilitate rapid 
exchange of small molecules, such as glucose and lactate, 
assisted—in the case of glucose—by an active transport 
system. Proteins are present in synovial fluid at concentra-
tions inversely proportional to molecular size, with synovial 
fluid albumin concentrations being about 45% of those in 
plasma. Concentrations of electrolytes and small molecules 
are equivalent to those in plasma.157

Synovial fluid is cleared through lymphatics in the 
synovium, assisted by joint movement. In contrast to ultra-
filtration, lymphatic clearance of solutes is independent of 
molecular size. In addition, constituents of synovial fluid, 
such as regulatory peptides, may be degraded locally by 
enzymes, and low-molecular-weight metabolites may diffuse 
along concentration gradients into plasma. The kinetics of 
delivery and removal of a protein must be determined (e.g., 
using albumin as a reference solute) to assess the signifi-
cance of its concentration in the joint.158

Hyaluronic acid is synthesized by fibroblast-like synovial 
lining cells, and it appears in high concentrations in syno-
vial fluid at around 3 g/L, compared with a plasma concen-
tration of 30 µg/L.91 Lubricin, a glycoprotein that assists 
articular lubrication, is another constituent of synovial 
fluid that is generated by the lining cells.159 It is now 
believed that hyaluronan functions in fluid-film lubrica-
tion, whereas lubricin is the true boundary lubricant in 
synovial fluid (see later discussion). Because the volume of 
synovial fluid is determined by the amount of hyaluronan, 
water retention seems to be the major function of this large 
molecule.

Despite the absence of a basement membrane, synovial 
fluid does not mix freely with extra-cellular synovial tissue 
fluid.96 Hyaluronan may trap molecules within the synovial 
cavity by acting as a filtration screen on the surface of the 
synovial lining, resisting the movement of synovial fluid out 
from the joint space. Synovial fluid and its constituent pro-
teins have a rapid turnover time (around 1 hour in normal 
knees), and equilibrium is not usually reached among all 
parts of the joint. Tissue fluid around fenestrated endothe-
lium reflects plasma ultrafiltrate most closely, with a low 
content of hyaluronate compared with synovial fluid. Alter-
natively, locally generated or released peptides, such as 
endothelin and substance P, may attain much higher peri-
vascular concentrations than those measured in synovial 
fluid. However, the turnover time for hyaluronan in the 
normal joint (13 hours) is an order of magnitude slower 
than that of small solutes and proteins. Association with 
hyaluronan may result in trapping of solutes within syno-
vial fluid.

In normal joints, intra-articular pressures are slightly  
subatmospheric at rest (0 to −5 mm Hg). During exercise, 
hydrostatic pressure in the normal joint may decrease 
further. Resting intra-articular pressures in rheumatoid 
joints are around 20 mm Hg, whereas during isometric exer-
cise, they may increase to greater than 100 mm Hg, well 
above capillary perfusion pressure and, at times, above arte-
rial pressure. Repeated mechanical stresses can interrupt 
synovial perfusion during joint movement, particularly in 
the presence of a synovial effusion.

Figure 1-7  Ratio of the concentration of proteins in synovial fluid to 
that found in serum, plotted as a function of molecular weight. Larger 
proteins are selectively excluded from normal synovial fluid, but this 
macromolecular sieve is less effective in diseased synovium. Prot. conc., 
Protein concentration; RA, rheumatoid arthritis; SF, synovial fluid. (From 
Kushner I, Somerville JA: Permeability of human synovial membrane to 
plasma proteins. Arthritis Rheum 14:560, 1971. Reprinted with permission 
of the American College of Rheumatology.)
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0.1-µm thick in the normal human hip joint, but it can be 
much thinner in the presence of inflammatory synovial 
fluids or with increased cartilage porosity.91

Lubricin is the major boundary lubricant in the human 
joint.159 Lubricin is a glycoprotein, also called superficial 
zone protein or proteoglycan 4, that is synthesized by syno-
vial cells, chondrocytes, meniscus, and tendon cells.164,165 It 
has a molecular weight of 225,000, a length of 200 nm, and 
a diameter of 1 to 2 nm. Dipalmitoyl phosphatidylcholine, 
which constitutes 45% of the lipid in normal synovial fluid, 
acts together with lubricin as a boundary lubricant. In bound-
ary lubrication, lubricin functions as a phospholipid carrier 
via a mechanism that is common to all tissues and protects 
the cartilage by reducing pathologic deposition of proteins 
at the cartilage surface.166 The importance of lubricin in 
preserving cartilage homeostasis is illustrated by the study 
of persons with loss-of-function mutations in the lubricin 
gene, resulting in the camptodactyl-arthopathy-coxa vara-
pericarditis syndrome, which is associated with the develop-
ment of severe premature OA.167 Of interest, long-term 
overexpression of lubricin in animal models of OA protects 
against both age-related and post-traumatic OA through 
inhibition of transcriptional programs that promote carti-
lage catabolism and chondrocyte hypertrophy.168

Nutrition

As observed by Hunter in 1743,169 normal adult articular 
cartilage contains no blood vessels. Vascularization of car-
tilage would be expected to alter its mechanical properties. 
Blood flow would be repeatedly occluded during weight 
bearing and exercise, with reactive oxygen species gener-
ated during reperfusion, resulting in repeated damage to 
cartilage matrix and chondrocytes. Chondrocytes synthesize 
specific inhibitors of angiogenesis that maintain articular 
cartilage as an avascular tissue.170-173 As a result of the lack 
of adjacent blood vessels, the chondrocyte normally lives in 
a hypoxic and acidotic environment, with extra-cellular 
fluid pH values around 7.1 to 7.2,174 and it uses anaerobic 
glycolysis for energy production.175,176 High lactate levels in 
normal synovial fluid, compared with paired plasma mea-
surements, partially reflect this anaerobic metabolism.176 
The two sources of nutrients for articular cartilage are the 
synovial fluid and subchondral blood vessels.

The synovial fluid and, indirectly, the synovial lining, 
through which synovial fluid is generated, are the major 
sources of nutrients for articular cartilage. Nutrients may 
enter cartilage from synovial fluid either by diffusion or  
by mass transport of fluid during compression-relaxation 
cycles.177 Molecules as large as hemoglobin (65 kDa) can 
diffuse through normal articular cartilage,178 and the solutes 
needed for cellular metabolism are much smaller. Diffusion 
of uncharged small solutes, such as glucose, is not impaired 
in matrices containing large amounts of glycosaminogly-
cans, and diffusivity of small molecules through hyaluronate 
is enhanced.179,180

Intermittent compression may serve as a pump mecha-
nism for solute exchange in cartilage. The concept has 
arisen from observations that joint immobilization or dislo-
cation leads to degenerative changes. In contrast, exercise 
increases solute penetration into cartilage in experimental 
systems.178 During weight bearing, fluid escapes from the 

diffusion of regulatory peptides from their sites of release 
into synovial fluid. In inflammatory arthritis, fibrin deposits 
may retard flow between the tissue and the liquid phase.

Recently, Sohn and coworkers160 analyzed synovial fluids 
and sera from a small series of patients with OA and rheu-
matoid arthritis using mass spectrometry and multiplex 
bead-based immunoassays. They identified more than a 
hundred proteins that were increased in the synovial fluid 
of patients with OA compared with healthy subjects. Of 
interest, they found that more than one-third of the pro-
teins in the OA synovial fluid were plasma proteins. They 
speculated that the presence of these plasma proteins in the 
synovial fluid could be related to alterations in the endo-
thelial barrier associated with local inflammation in the 
synovial tissue.

Gobezie and co-workers161 utilized high-throughput mass 
spectroscopy-based proteomic analysis to define the protein 
expression profiles of high abundance synovial fluid proteins 
in healthy subjects and in patients with early and late OA. 
They identified 18 proteins that were significantly differen-
tially expressed between the osteoarthritic and control 
groups. Although all of the differentially expressed proteins 
were present in the blood and could therefore enter the 
joint through alterations in vascular permeability associated 
with the disease state, these molecules were also products 
of synovial cells and chondrocytes, suggesting that they 
could be locally produced within the joint. More recently, 
Ritter et al.162 utilized a more sensitive method based on gel 
electrophoresis and mass spectrometry to examine the syno-
vial fluid proteome from patients with OA. They compared 
the proteomic results with mRNA expression profiles of 
joint tissues and demonstrated that many of the proteins 
were derived from synovium or cartilage, providing direct 
evidence that cells within the joint were a source of the 
synovial fluid products. Proteins associated with oxidative 
damage and activation of mitogen-activated protein kinases 
were among the high-abundance molecules in the OA  
synovial fluids. They also identified members of the pro-
inflammatory complement cascade in the synovial fluid. Of 
interest, these molecules have been implicated in the 
pathophysiology of both OA and rheumatoid arthritis.163

LUBRICATION AND NUTRITION OF THE 
ARTICULAR CARTILAGE

Lubrication

Synovial fluid serves as a lubricant for articular cartilage and 
a source of nutrition for the chondrocytes. Lubrication is 
essential for protecting cartilage and other joint structures 
from friction and shear stresses associated with movement 
under loading. There are two basic categories of joint lubri-
cation. In fluid-film lubrication, cartilage surfaces are sepa-
rated by an incompressible fluid film, and hyaluronan 
functions as the lubricant. In boundary lubrication, special-
ized molecules attached to the cartilage surface permit 
surface-to-surface contact while decreasing the coefficient 
of friction. During loading, a noncompressible fluid film is 
trapped between opposing cartilage surfaces and prevents 
the surfaces from touching. Irregularities in the cartilage 
surface and its deformation during compression may augment 
this trapping of fluid. This stable film is approximately 
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load-bearing region by flow to other cartilage sites. When 
the load is removed, cartilage re-expands and draws back 
fluid, exchanging nutrients with waste materials.181

In a growing child, the deeper layers of cartilage are 
vascularized, such that blood vessels penetrate between 
columns of chondrocytes in the growth plate. It is likely that 
nutrients diffuse from these tiny end capillaries through the 
matrix to chondrocytes. Diffusion from subchondral blood 
vessels is not considered a major route for the nutrition of 
normal adult articular cartilage because of the barrier  
provided by its densely calcified lower layer. Nonetheless, 
partial defects may normally exist in this barrier,182 and in 
arthritis, neovascularization of the deeper layers of articular 
cartilage may contribute to cartilage nutrition and to entry 
of inflammatory cells and cytokines.139,152,183

CONCLUSION

Normal human synovial joints are complex structures that 
comprise interacting connective tissue elements that permit 
constrained and low-friction movement of adjacent bones. 
The development of synovial joints in the embryo is a 
highly ordered process involving complex cell-cell and cell-
matrix interactions that lead to the formation of the carti-
lage anlage and interzone and joint cavitation. Understanding 
of the cellular interactions and molecular factors involved 
in cartilage morphogenesis and limb development has pro-
vided clues to understanding the functions of the synovium, 
articular cartilage, and associated structures in the mature 
joint.

The synovial joint is uniquely adapted to respond to 
environmental and mechanical demands. The synovial 
lining is composed of two to three cell layers, with no base-
ment membrane separating the lining cells from the under-
lying connective tissue. The synovium produces synovial 
fluid, which provides nutrition and lubrication to the avas-
cular articular cartilage. Normal articular cartilage contains 
a single cell type, the articular chondrocyte, which is 
responsible for maintaining the integrity of the extra- 
cellular cartilage matrix. This matrix consists of a complex 
network of collagens, proteoglycans, and other noncollag-
enous proteins, which provide tensile strength and compres-
sive resistance. Proper distribution and relative composition 
of these proteins is required for the function of cartilage in 
protecting the subchondral bone from adverse environmen-
tal influences.

Maintenance of the unique composition and organiza-
tion of each joint tissue is crucial for normal joint function, 
which is compromised in response to inflammation, bio
mechanical injury, and aging. Knowledge of the normal 
structure-function relationships within joint tissues is essen-
tial for understanding the pathogenesis and consequences 
of joint diseases.

Full references for this chapter can be found on 
ExpertConsult.com.
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Synovium

STRUCTURE

The synovium is a membranous structure that extends from 
the margins of articular cartilage and lines the capsule of 
diarthrodial joints, including the temporomandibular joint1 
and the facet joints of vertebral bodies (Figure 2-1).2 The 
healthy synovium covers intra-articular tendons and liga-
ments, as well as fat pads, but not articular cartilage or 
meniscal tissue. Synovium also ensheaths tendons where 
they pass beneath ligamentous bands and bursas that cover 
areas of stress such as the patella and the olecranon. The 
synovial membrane is divided into two general regions: the 
intima, or synovial lining, and the subintima, otherwise 
referred to as the sublining. The intima represents the inter-
face between the cavity containing synovial fluid and the 
subintimal layer. No well-formed basement membrane sepa-
rates the intima from the subintima. In contrast to the 
pleura or pericardium, it is not a true lining because it lacks 
tight junctions, epithelial cells, and a well-formed basement 
membrane. The subintima is composed of fibrovascular con-
nective tissue and merges with the densely collagenous 
fibrous joint capsule.

Synovial Lining Cells

The synovial intimal layer is composed of synovial lining 
cells (SLCs), which are arrayed on the luminal aspect of the 
joint cavity. SLCs, termed synoviocytes, are one to three 
cells deep, depending on the anatomic location, and extend 
20 to 40 µm beneath the lining layer surface. The major 
and minor axes of SLCs measure 8 to 12 µm and 6 to 8 µm, 
respectively. The SLCs are not homogeneous and are  
conventionally divided into two major populations,  
namely, type A (macrophage-like) synoviocytes and type B 
(fibroblast-like) synoviocytes.3

Ultrastructure of Synovial Lining Cells

Transmission electron microscopic analysis shows that the 
intimal cells form a discontinuous layer, and thus the sub-
intimal matrix can directly contact the synovial fluid (Figure 
2-2). The existence of two distinct cell types—type A and 
type B SLCs—was originally described by Barland and asso-
ciates,4 and several lines of evidence, including animal 
models, detailed ultrastructural studies, and immunohisto-
chemical analyses, indicate that these cells represent mac-
rophages (type A SLCs) and fibroblasts (type B SLCs). 
Studies of SLC populations in a variety of species, including 
humans, have found that macrophages make up anywhere 
from 20% and fibroblast-like cells approximately 80% of the 
lining cell.5,6 The existence of the two cell types has been 
substantiated by similar findings in a wide variety of species, 
including hamsters, cats, dogs, guinea pigs, rabbits, mice, 
rats, and horses.6-14

Distinguishing different cell populations that form the 
synovial lining requires immunohistochemistry or transmis-
sion light microscopy. At an ultrastructural level, type A 
cells are characterized by a conspicuous Golgi apparatus, 
large vacuoles, and small vesicles, and they contain little 
rough endoplasmic reticulum, giving them a macrophage-
like phenotype (Figure 2-3A and B). The plasma membrane 
of type A cells possesses numerous fine extensions, termed 
filopodia, that are characteristic of macrophages. Type A 
cells occasionally cluster at the tips of the synovial villi; this 
uneven distribution explains, at least in part, early reports 
that suggested that type A cells were the predominant 
intimal cell type.4,8 However, the distribution is highly vari-
able and can differ depending on the joint evaluated or even 
within an individual joint.

Type B SLCs have prominent cytoplasmic extensions 
that extend onto the surface of the synovial lining (Figure 
2-3C and D).15 Frequent invaginations are seen along the 
plasma membrane, and a large indented nucleus relative to 
the area of the surrounding cytoplasm is also a feature. Type 
B cells have abundant rough endoplasmic reticulum widely 
distributed in the cytoplasm, and the Golgi apparatus, vacu-
oles, and vesicles are generally inconspicuous, although 
some cells have small numbers of prominent vacuoles at 
their apical aspect. Type B SLCs are known to contain 
longitudinal bundles of different-sized filaments, supporting 
their classification as fibroblasts. Desmosomes and gap-like 
junctions have been described in rat, mouse, and rabbit 
synovium, but the existence of these structures in human 
SLCs has never been documented. Although occasional 
reports describe an intermediate synoviocyte phenotype, it 

KEY POINTS

The synovium provides nutrients to cartilage and produces 
lubricants for the joint.

The intimal lining of the synovium includes macrophage-like 
and fibroblast-like synoviocytes.

The sublining in normal synovium contains scattered 
immune cells, fibroblasts, blood vessels, and fat cells.

Fibroblast-like synoviocytes in the intimal lining produce 
specialized enzymes that synthesize lubricants such as 
hyaluronic acid.
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Figure 2-1  The cartilage-synovium junction. Hyaline articular cartilage 
occupies the left half of this image, and fibrous capsule and synovial 
membrane occupy the right half. A sparse intimal lining layer with a 
fibrous subintima can be observed extending from the margin of the 
cartilage across the capsular surface to assume a more cellular intimal 
structure with areolar subintima. 

500 µm

Figure 2-2  Transmission electron photomicrograph of synovial intimal 
lining cells. The cell on the left exhibits the dendritic appearance of a 
synovial intimal fibroblast (type B cell). Other overlying fibroblast den-
drites can be observed. Intercellular gaps allow the synovial fluid to be 
in direct contact with the synovial matrix. 

2 Microns

is likely that these cells are functionally conventional type 
A or B cells.16,17

Immunohistochemical Profile of Synovial Cells

Synovial Macrophages.  Synovial macrophages and fibro-
blasts express lineage-specific molecules that can be detected 
by immunohistochemistry. Synovial macrophages express 
common hematopoietic antigen CD45 (Figure 2-4A); 
monocyte/macrophage receptors CD163 and CD97; and 
lysosomal enzymes CD68 (Figure 2-4B), neuron-specific 
esterase, and cathepsins B, L, and D. Cells expressing CD14, 
a molecule that acts as a co-receptor for the detection of 
bacterial lipopolysaccharide and is expressed by circulating 
monocytes and monocytes newly recruited to tissue, are 
rarely seen in the healthy intimal layer, but small numbers 
are found close to venules in the subintima.18-24

The Fcγ receptor, FcγRIII (CD16), which is expressed by 
Kupffer cells of the liver and type II alveolar macrophages 
of the lung, is expressed on a subpopulation of synovial 
macrophages.25-27 The synovial macrophage population also 
expresses the class II major histocompatibility complex 

(MHC) molecule, which plays an important role in the 
immune response. More recently, the macrophages, which 
are responsible for the removal of debris, blood, and particu-
late material from the joint cavity and possess antigen-
processing properties, have been found to express Z39Ig, a 
complement-related protein that is a cell surface receptor 
and immunoglobulin superfamily member involved in the 
induction of human leukocyte antigen, DR subregion 
(HLA-DR) and implicated in phagocytosis and antigen-
mediated immune responses.28-30

Expression of the β2 integrin chains CD18, CD11a, 
CD11b, and CD11c varies; CD11a and CD11c may be 
absent or weakly expressed on a few lining cells.31,32 Osteo-
clasts, which are tartrate resistant and acid phosphatase 
positive and express the αVβ3 vitronectin and calcitonin 
receptors, do not appear in the normal synovium.

Synovial Intimal Fibroblasts.  Synovial intimal and sub-
intimal fibroblasts are indistinguishable by light microscopy. 
They generally are considered to be closely related in terms 
of cell lineage, but because of their different microenviron-
ments, they do not always share the same phenotype. They 
possess prominent synthetic capacity and produce the 
essential joint lubricants hyaluronic acid (HA) and lubri-
cin.33 Intimal fibroblasts express uridine diphosphoglucose 
dehydrogenase (UDPGD), an enzyme involved in HA syn-
thesis that is a relatively specific marker for this cell type. 
UDPGD converts UDP-glucose to UDP-glucuronate, one 
of the two substrates required by HA synthase for assembly 
of the HA polymer.34 CD44, the nonintegrin receptor for 
HA, is expressed by all SLCs.32,35,36

Synovial fibroblasts also synthesize normal matrix com-
ponents, including fibronectin, laminin, collagens, proteo-
glycans, lubricin, and other identified and unidentified 
proteins. They have the capacity to produce large quantities 
of metalloproteinases, metalloproteinase inhibitors, prosta-
glandins, and cytokines. This capacity must provide essen-
tial biologic advantages, but the complex physiologic 
mechanisms relevant to normal function are incompletely 
delineated. Expression of selected adhesion molecules on 
synovial fibroblasts probably facilitates the trafficking of 
some cell populations, such as neutrophils, into the synovial 
fluid and the retention of others, such as mononuclear leu-
kocytes, in the synovial tissue. Expression of metallopro-
teinases, cytokines, adhesion molecules, and other cell 
surface molecules is strikingly increased in inflammatory 
states.

Specialized intimal fibroblasts express many other mol-
ecules that also might be expressed by the intimal macro-
phage population or by most subintimal fibroblasts, including 
decay-accelerating factor (CD55), vascular cell adhesion 
molecule–1,33,37-40 and cadherin-11.41,42 PGP.95, a neuronal 
marker, might be specific for type B synoviocytes in some 
species.43 Decay-accelerating factor, which is also expressed 
on many other cells (most notably erythrocytes), as well as 
bone marrow cells, interacts with CD97, a glycoprotein that 
is present on the surface of activated leukocytes, including 
intimal macrophages, and is thought to be involved in sig-
naling processes early after leukocyte activation.44,45 In con-
trast, FcγRIII is expressed by macrophages only when they 
are in close contact with decay-accelerating factor–positive 
fibroblasts or decay-accelerating factor–coated fibrillin-1 
microfibrils in the extra-cellular matrix.26
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Figure 2-3  Transmission electron photomicrographs of synovial intimal macrophages (type A cells) and fibroblasts (type B cells). A, Low-powered 
magnification shows the surface fine filopodia, characteristic of macrophages, and a smooth-surfaced nucleus. B, The boxed area in A is shown at a 
higher magnification, revealing numerous vesicles, characteristic of macrophages. Absence of rough endoplasmic reticulum also is noted. C, The 
convoluted nucleus along with the prominent rough endoplasmic reticulum (boxed area) is characteristic of a synovial intimal fibroblast (type B cell). 
D, The rough endoplasmic reticulum is shown at greater magnification. 
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Figure 2-4  Photomicrographs depicting synovial intimal macrophages by immunohistochemistry. Macrophages are decorated with CD45 (arrow in 
A) and CD68 (B), which are markers that identify hematopoietic cells (CD45) and macrophages (CD68). 
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Origin of Synovial Lining Cells

There is little doubt that the type A SLC population is 
bone marrow–derived and represents cells of the mononu-
clear phagocyte system.4 Studies in the Beige (bg) mouse, 
which harbors a homozygous mutation that confers the 
presence of giant lysosomes in macrophages, have con-
firmed the bone marrow origin of these cells.56,57 Normal 
mice with bone marrow depleted through irradiation were 
rescued with bone marrow cells obtained from the bg 
mouse. Electron microscopic analysis of the synovium  
from recipient animals revealed that type A SLCs con-
tained the giant lysosomes of the donor bg mouse and that 
these structures were never identified in type B cells. These 
findings provide powerful evidence that (1) type A SLCs 
represent macrophages, (2) they are recruited from the 
bone marrow, and (3) they are a distinct lineage from type 
B SLCs.

In addition to immunohistochemistry, several lines of 
evidence support the concept that type A SLCs are recruited 
from the bone marrow:
•	 The osteopetrotic (op/op) mouse, a spontaneously 

occurring mutant that fails to produce macrophage 
colony-stimulating factor because of a missense muta-
tion in the CSF1 gene,58-60 has low numbers of circu
lating and resident macrophage colony-stimulating 
factor–dependent macrophages, including those in the 
synovium.

•	 Type A cells in rat synovium do not populate the  
joint until after the development of synovial blood 
vessels.22

•	 Type A SLCs are conspicuous around vessels in the 
synovium in neonatal mice.6

•	 When synovial explants are placed in culture, the reduc-
tion in type A SLCs is explained in part by their migra-
tion into the culture medium—an observation that 
reflects the process of migration of macrophages into the 
synovial fluid in vivo.1,61

•	 Macrophages constitute up to 80% of the cells found 
around venules in inflammatory conditions such as RA 
and are cleared rapidly (<48 hours) after successful treat-
ment but will re-accumulate from the circulation if 
relapse occurs.62

Type B intimal cells represent a resident fibroblast popu-
lation in the synovial lining, but little is known about the 
cells from which they derive and about how their recruit-
ment is regulated. The existence of mesenchymal stem cells 
in the synovium suggests that these cells might differentiate 
into the synovial lining fibroblast. To date, a specific tran-
scription factor directing mesenchymal stem cell differen-
tiation into the synovial fibroblast, similar to factors required 
for commitment by this multipotential population into 
bone (cbfa-1), cartilage (Sox-9), and fat (peroxisome 
proliferator-activated receptor γ [PPARγ]), has not been 
identified.

Several important signaling pathways are activated  
in the inflamed synovium, including nuclear factor-κB 
(NF-κB), Janus kinase/signal transducer and activator of 
transcription (JAK/STAT), Notch, and hypoxia-inducible 
factor 1, α subunit (HIF-1α). NF-κB is a key transcriptional 
regulator in the inflamed synovium.63 NF-κB signaling is 
complex and may be activated by cytokines, cell surface 

Toll-like receptors (TLRs) are also expressed on intimal 
fibroblasts, including TLR2, which is activated by serum 
amyloid A (among other ligands), leading to angiogenesis 
and cell invasion that is mediated, at least in part, via the 
Tie2 signaling pathway.46,47 Cadherins are a class of tissue-
restricted transmembrane proteins that play important roles 
in homophilic intercellular adhesion and are involved in 
maintaining the integrity of tissue architecture. Cadherin-11, 
which was cloned from rheumatoid arthritis (RA) synovial 
tissue, is expressed in normal synovial intimal fibroblasts but 
not in intimal macrophages. Fibroblasts transfected with 
cadherin-11 form a lining-like structure in vitro, which 
implicates this molecule in the architectural organization of 
the synovial lining.41,42,48 This suggestion is supported by the 
observation that cadherin-deficient mice have a hypoplastic 
synovial intimal lining and are resistant to inflammatory 
arthritis.49 When fibroblasts expressing cadherin-11 are 
embedded in laminin microparticles, they migrate to the 
surface and form an intimal lining–like structure.50 If mac-
rophage lineage cells are included in the culture, they can 
co-localize with fibroblasts on the surface. Therefore, the 
organization of the synovial lining, including the distribu-
tion of type A and B cells, is orchestrated by fibroblast-like 
synoviocytes.

β1 and β3 integrins are present on all SLCs, forming 
receptors for laminin (CD49f and CD49b), types I and  
IV collagen (CD49b), vitronectin (CD51), CD54 (a mem-
ber of the immunoglobulin superfamily), and fibronectin 
(CD49d and CD49e). CD31 (platelet–endothelial cell 
adhesion molecule), a member of the immunoglobulin 
superfamily expressed on endothelial cells, platelets, and 
monocytes, is weakly expressed on SLCs.32

Turnover of Synovial Lining Cells

Proliferation of SLCs in humans is low; when normal 
human synovial explants have a labeling index of approxi-
mately 0.05% to 0.3%51 when exposed to 3H thimidine.

This labeling index bears a striking contrast to labeling 
indices of approximately 50% for bowel crypt epithelium. 
Similar evidence of low proliferation has been found  
in the synovium of rats and rabbits. The proportion of 
SLCs expressing the proliferation marker Ki67 is between 
1 in 2800 and 1 in 30,000, confirming the relatively  
slow rate of in situ proliferation.52 Proliferating cells are 
generally synovial fibroblasts,22,53 a finding consistent with 
the concept that type A synovial cells are terminally dif-
ferentiated macrophages. Mitotic activity of SLCs is low 
in inflammatory conditions, such as RA—a condition 
associated with SLC hyperplasia. Some investigators54 
have reported only rare mitotic figures in RA synovium 
samples.

Apart from the knowledge that synovial fibroblasts  
proliferate slowly, little is known about their natural life 
span, recruitment, or mode of death. Apoptosis is likely 
involved with maintaining synovial homeostasis, but cul-
tured fibroblast-like synoviocytes tend to be resistant to 
apoptosis, and very few intimal lining cells display evi-
dence of completed apoptosis by ultrastructural analysis or 
by labeling for fragmented DNA. The paucity of normal 
synovium samples for evaluation and the rapid clearance of 
apoptotic cells could confound the analysis.55
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adhesion molecules, and hypoxia.63,64 NF-κB activation 
could facilitate synovial hyperplasia by promoting prolifera-
tion and inhibiting apoptosis of RA fibroblast-like synovio-
cytes. One of the key roles of NF-κB is to protect RA 
fibroblast-like synoviocytes against apoptosis, possibly by 
countering the cytotoxicity of tumor necrosis factor (TNF) 
and Fas ligand.65

JAK/STAT, Notch, and HIF-1α signaling pathways are 
also evident in inflamed synovium. STAT3 expression in 
the synovium correlates with synovitis and is activated by 
interleukin (IL)-666 but also indirectly by TNF. Notch sig-
naling pathway components are predominantly localized to 
perivascular/vascular regions67 and are regulated by vascular 
endothelial growth factor (VEGF) and ang2, which is con-
sistent with the role of mediation of angiogenesis by Notch 
in inflammation and cancer.67,68 Interestingly, hypoxia in-
duces activation of phospho (p)-STAT3/p-STAT1, NF-κB, 
and Notch in synovial cells.69 Furthermore, Notch/HIF-1α 
interactions in RA synoviocytes are in part mediated 
through STAT3 activation,70 possibly through competition 
of STAT3 with von Hippel–Lindau tumor suppressor for 
binding to HIF-1α. Although no direct link between NF-κB 
and HIF-1α has been demonstrated in the inflamed joint, 
preferential activation of the canonical NF-κB pathway 
occurs in RA synovial tissue obtained from patients with 
more hypoxic joints.69

Subintimal Layer

SLCs are not separated from the underlying subintima  
by a well-formed basement membrane composed of the 
typical trilaminar structure seen beneath epithelial mucosa. 
Nevertheless, most components of basement membrane  
are present in the extra-cellular matrix surrounding  
SLCs. These components include tenascin X, perlecan (a 
heparan sulfate proteoglycan), type IV collagen laminin, 
and fibrillin-1.71,72 Of note is the absence of laminin-5 and 
integrin α3β3γ2, which are components of epithelial 
hemidesmosomes.73

The subintima is composed of loose connective tissue of 
variable thickness and variable proportions of fibrous/
collagenous and adipose tissue, depending on the anatomic 
site. Under normal healthy conditions, inflammatory cells 
are virtually absent from the subintima, apart from a sprin-
kling of macrophages and scattered mast cells.74 Human 
synovial tissue is a rich source of mesenchymal stem cells, 
and although it is unknown which compartment contains 
this cell population, some cells have the ability to self-renew 
and differentiate into bone, cartilage, and fat in vitro—a 
phenomenon that reflects the ability of the cell to regener-
ate in vivo.75-77

Three categories of subintima are well defined: areolar, 
fibrous, and fatty/adipose types. Under the light microscope, 
areolar-type subintima, the most commonly studied, gener-
ally is found in larger joints in which there is free movement 
(Figure 2-5A). It is composed of fronds with a cellular 
intimal lining and loose connective tissue in the subintima, 
with little in the way of dense collagen fibers, and a rich 
vasculature. The fibrous subintima is composed of scant, 
dense, fibrous, poorly vascularized connective tissue, and it 
has an attenuated layer of SLCs (Figure 2-5B). The adipose 
type, which contains abundant mature fat cells and has a 

Figure 2-5  Photomicrographs of different morphologic types of syno-
vial tissue. All photomicrographs show an intimal layer of one to two cells 
in depth. A, The areolar synovium is composed of villous fronds. Beneath 
the intimal lining layer is cellular loose fibrovascular fatty subintima.  
B, The fibrous synovium comprises dense collagenous material in the 
subintimal layer. C, The subintimal layer of the fatty synovial tissue is 
composed of less cellular mature adipose tissue with little collagen 
deposition. 
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single layer of SLCs, is seen more commonly with aging and 
in intra-articular fat pads (Figure 2-5C).

The subintima contains types I, III, V, and VI collagen, 
glycosaminoglycans, proteoglycans, and extra-cellular 
matrices, including tenascin and laminins. Integrin recep-
tors for collagens, laminin, and vitronectin are absent or  
at best weakly expressed by subintimal cells. In contrast, 
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joints affected by osteoarthritis (42.9 mm Hg) or traumatic 
effusions (63 mm Hg). This observation was supported by 
studies showing increased glycolytic metabolism in the joint 
suggestive of increased metabolic activity. Low pO2 in the 
inflammed synovial membrane was confirmed with pO2 
probes, with mean levels approximately 3% compared with 
normal joints at 7%.82 The degree of hypoxia in synovium 
affected by RA and normal synovium was inversely related 
to the number of blood vessels observed and their level of 
maturity. In patients responding to TNF blockade, the pO2 
increased, thus improving oxygenation to a level similar to 
that of normal joints.

Subintimal Lymphatics

Detailed analysis of the number and distribution of lym-
phatic vessels has been made possible by the use of the 
antibody to the lymphatic vessel endothelial HA receptor 
(LYVE-1) (Figure 2-6B).83 This antibody is highly specific 
for lymphatic endothelial cells in lymphatic vessels and 
lymph node sinuses and does not react with endothelial 
cells of capillaries and other blood vessels that express 
CD34 and factor VIII–related antigen. Expression of 
LYVE-1 in lymphatic endothelial cells has been used as a 
marker to show that lymphatic vessels are less common in 
the fibrous synovium compared with areolar and adipose 
variants of human subsynovial tissue. Detection of this mol-
ecule reveals that lymphatics are present in the superficial, 
intermediate, and deeper layers of synovial membrane in 
synovium from healthy persons or patients with osteoar-
thritis and joints affected by RA, although the number in 
the superficial subintimal layer is low in normal synovium. 
Little difference in the distribution and number is noted 
between normal and osteoarthritis synovium, which is 
characterized by lack of villous hypertrophy. Lymphatic 
channels are plentiful, however, in the subintimal layer in 
the presence of villous edema hypertrophy and chronic 
inflammation.

Subintimal Nerve Supply

The synovium has a rich network of sympathetic and 
sensory nerves. The former, which are myelinated and 
detected with the antibody against S-100 protein, terminate 
close to blood vessels, where they regulate vascular tone 
(Figure 2-6C through E). Sensory nerves respond to pro-
prioception and pain via large myelinated nerve fibers and 
via small (<5 µm) unmyelinated or myelinated fibers with 
unmyelinated free nerve ends (nociceptors). The latter are 
immunoreactive in the synovium for neuropeptides, includ-
ing substance P, calcitonin gene–related peptide, and vaso-
active intestinal peptides.84,85

FUNCTION

Synthetic and protective functions of individual synovial 
cell populations are multiple and complex. The composite 
synovial structure, which includes cell populations and their 
products, vasculature, nerves, and the intercellular matrix, 
possesses several specialized functions that are essential  
for normal joint movement, synovial fluid formation, chon-
drocyte nutrition, and cartilage protection at multiple 

receptors for fibronectin (CD49d and CD49e) are detected, 
and CD44, the HA receptor, is strongly expressed in  
most subintimal cells. β2 integrins are largely limited to 
perivascular areas, particularly in the subintimal zone, as is 
CD54.78

Subintimal Vasculature

The vascular supply to the synovium is provided by many 
small vessels and is shared in part by the joint capsule, 
epiphyseal bone, and other perisynovial structures. Arterio-
venous anastomoses communicate freely with the vascular 
supply to the periosteum and to periarticular bone. As large 
synovial arteries enter the deep layers of the synovium near 
the capsule, they branch to form microvascular units in the 
more superficial subsynovial layers. Precapillary arterioles 
probably play a major role in controlling circulation to the 
lining layer. The surface area of the synovial capillary bed 
is large, and because it runs only a few cell layers deep to 
the surface, it has a role in trans-synovial exchange of mol-
ecules. The intimal lining, however, is devoid of blood 
vessels. While few in number, studies have shown that 
vessels in the normal synovium have an intact pericyte 
layer, suggesting vessel stability, in contrast to the inflamed 
joint, where a mix of mature and immature vessels were 
observed. Neural cell adhesion molecule (NCAM) defi-
ciency and oxidative DNA damage suggest that vessels may 
remain in a plastic state even after pericyte recruitment.79,80 
After TNF blockade, synovial blood vessels become more 
stable and resemble normal synovium.

Numerous physical factors influence synovial blood 
flow. Heat promotes blood flow through synovial capillar-
ies. Exercise enhances synovial blood flow to normal joints 
but may reduce the clearance rate of small molecules from 
the joint space. Experiments have shown a substantial vas-
cular reserve capacity in normal articulations. Immobiliza-
tion reduces synovial blood flow, and pressure on the 
synovial membrane can act to tamponade the synovial 
blood supply.

Vascular endothelial lining cells express CD34 and 
CD31 (Figure 2-6A). They also express receptors for the 
major components of basement membrane, including 
laminin and collagen IV, and the integrin receptors CD49a 
(laminin and collagen receptors), CD49d (fibronectin 
receptor), CD41, CD51 (vitronectin receptor), and CD61 
(the β3 integrin subunit). Endothelial cells express CD44, 
the HA receptor, and CD62P (P-selectin), which acts as a 
receptor that supports binding of leukocytes to activated 
platelets and endothelium. They are only weakly positive 
in uninflamed synovium, however, for expression of CD54 
(intercellular adhesion molecule–1), a receptor for β2 inte-
grins expressed by many leukocytes. The endothelial cells 
of capillaries in the superficial zone of the subintima are 
strongly positive for HLA-DR expression by immunohisto-
chemistry, whereas cells in the larger vessels in the deep 
aspect of the membrane are negative.32,34

Hypoxia might be a key driver of endothethlial cell acti-
vation and blood vessel formation in the inflamed joint. 
This theory was originally proposed in 1970,81 when a syno-
vial fluid electrode was used to demonstrate that a partial 
pressure of O2 in a knee joint affected by RA was 
26.5 mm Hg, which was significantly lower than that in 
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Figure 2-6  Photomicrographs of synovium show lymphovascular and nervous structures by immunohistochemistry. A and B, Areolar synovium 
featuring thin-walled vessels are highlighted with antibody to CD31 (A), and lymphatic vessels in an inflamed synovium are highlighted with antibody 
to lymphatic vessel endothelial HA receptor (LYVE-1) (B). C, Deep in the synovial subintima, close to the joint capsule, medium-sized neurovascular 
bundles are present with nerves highlighted by antibody to S-100. D, Within the more superficial synovium, small nerves decorated with S-100 are 
identified. E, The boxed area in D is shown at a higher magnification. The upper arrow is directed at a nerve; the lower arrow is directed at a small vessel. 
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anatomic locations. These functions must be preserved over 
a lifetime to maintain maximal mobility and independence. 
Absence of essential constituents of synovial fluid or inad-
equate cartilage protection results in early articular mal-
function, which may progress to local or generalized joint 
failure.

Joint Movement

Four characteristics of the synovium are essential for joint 
movement: deformability, porosity, nonadherence, and 
lubrication. In a healthy person, the synovium is a highly 
deformable structure that facilitates movement between 
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surfaces. Intimal cells on the synovial surface adhere to 
underlying cells and matrix but do not adhere to opposing 
synovial and cartilage surfaces. The mechanism that pre-
serves this phenomenon of nonadherence is unknown and 
might involve the arrangement of cell surface and tissue 
matrix molecules, such as collagen, fibronectin, and HA. 
Alternatively, nonadherence may result in part from regular 
movement of the normal synovial lining.

Lubrication

The fourth characteristic of synovium that is essential for 
joint motion is an efficient lubrication mechanism to facili-
tate movement of cartilage on cartilage. The mechanisms 
of joint lubrication are complex and are an integral compo-
nent of synovial physiology. In an articulating joint, carti-
lage is subjected to numerous compressive and frictional 
forces every day. Friction and wear can never be eliminated 
from a functioning joint. Adult chondrocytes do not nor-
mally divide in vivo, and damaged cartilage has limited 
capacity for self-repair. For a joint to maintain its function 
throughout a lifetime of use, protective biologic mecha-
nisms, such as lubrication, help minimize wear and damage 
that result from normal daily activities. Synovial membrane 
may also contribute to concentration of lubricants in syno-
vial fluid, because it is a semi-permeable membrane. These 
functions have recently been replicated by a polytetrafluo-
roethylene membrane that can be used in a bioreactor 
system to modulate lubricant retention in bioengineered 
synovial fluid. Synoviocytes adherent to such membranes 
may serve as a source of lubricant and a barrier for lubricant 
transport.87 Furthermore, cytokines can stimulate normal 
lubricant production 40- to 80-fold in such bioreactor 
systems (Figure 2-7).88

Boundary lubrication refers to the protective effect of par-
ticular lubricating molecules adsorbing to a surface and 
repelling its opposing interface.89 Bearing surfaces must gen-
erate a mutual repulsion to be lubricated in the boundary 
mode. Boundary lubricants exert their effects by changing 
the physicochemical characteristics of a surface, and they 
reduce articular friction and wear by providing a smooth 
and slippery coating. Friction is reduced by an interposed 

other adjacent, nondeformable structures within the joint. 
This unique facility of the synovium to enable movement 
between tissues rather than within tissues has been empha-
sized86 and can be attributed to the presence of a free surface 
that allows synovial tissue to remain separated from adja-
cent tissues. The ensuing space is maintained by the pres-
ence of synovial fluid.

Deformability

The deformability of normal synovium is considerable 
because it must accommodate the extreme positional range 
available to the joint and its adjacent tendons, ligaments, 
and capsule. When a finger is flexed, the palmar synovium 
of each interphalangeal joint contracts while the dorsal 
synovium expands, and as the finger extends, the reverse 
mechanism occurs. This normal contraction and expansion 
of synovium seems to involve a folding and unfolding com-
ponent and an elastic stretching and relaxation of the tissue. 
During repeated rapid movement, the synovial lining 
cannot be pinched between cartilage surfaces and for it to 
successfully retain its integrity and the integrity of synovial 
blood vessels and lymphatics. Deformability also limits the 
extent of synovial ischemia-reperfusion injury during joint 
motion by maintaining a relatively low intra-articular 
pressure.

Porosity

The synovial microvasculature and the intimal lining must 
be porous to permit robust diffusion of nutrients to cartilage. 
The structure of the intimal lining is ideal for this require-
ment because of the relatively disorganized basement mem-
brane and lack of tight junctions. Plasma components freely 
diffuse into the intra-articular space, and most plasma com-
ponents, including proteins, are present in synovial fluid at 
about one-third to one-half the plasma concentration.

Nonadherence

The third important characteristic of the synovium that 
facilitates joint movement is its nonadherence to opposing 

Figure 2-7  The molecular size of synovial fluid hyaluronic acid (HA) (Normal SF), supernatants of cultured synoviocytes (Medium), and synoviocytes 
stimulated with IL-1β, TGF-β1 TNF. Note that cells stimulated with the cytokine cocktail closely approximate HA of normal SF compared with control 
cells, with high molecular weight species that promote a low friction environment. (Data from Blewis ME, Lao BJ, Schumacher BL, et al: Interactive cytokine 
regulation of synoviocyte lubricant secretion. Tissue Eng Part A 16:1329–1337, 2010.)
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The gene is highly expressed by human synovial fibroblasts 
and by superficial zone chondrocytes.104 Lubricin is 
closely related to superficial zone protein, megakaryocyte-
stimulating factor, and hemangiopoietin, which are encoded 
by the same gene but can differ in terms of post-translational 
modification. Superficial zone protein is expressed by SLCs 
and by superficial zone chondrocytes at the cartilage surface 
but not by intermediate or deep zone chondrocytes.105 It has 
been suggested that lubricin may bind to the much longer 
hyaluronate polymers, distributing shear stress and stabiliz-
ing essential lubricant molecules.106

In an experimental model, lubricin seemed to have mul-
tiple functions in articulating joints and tendons, including 
protection of cartilage surfaces from protein deposition and 
cell adhesion and inhibition of synovial cell overgrowth.107 
Prg4−/− mice, which were consistently normal at birth, 
showed progressive loss of superficial zone chondrocytes and 
increasing synovial cell hyperplasia (Figure 2-8). The essen-
tial role of lubricin in maintaining joint integrity was shown 
by the identification of disease-causing mutations in patients 
with the autosomal-recessive disorder camptodactyly–
arthropathy–coxa vara–pericarditis (CACP) syndrome.108 
CACP is a large joint arthropathy associated with the 
absence of lubricin from synovial fluid and ineffective 
boundary lubrication provided by the synovial fluid (Figure 
2-9).106,109 In other studies of lubricin biology and joint 
integrity, experimental injury resulted in reduced synovial 
fluid lubricin concentrations, decreased boundary lubricat-
ing ability, and increased cartilage matrix degradation, each 
of which could be attributed to trauma-induced inflamma-
tory processes.104

Other investigators have argued against the primacy of 
lubricin in joint lubrication by proposing that surface-active 
phospholipid, which is also secreted by intimal fibroblasts, 
is the essential boundary lubricant that reduces cartilage 
friction to remarkably low levels.110 It was hypothesized that 
lubricin acts as the carrier of surface-active phospholipid to 
articular cartilage but is not the lubricant per se, a function 
that is similar to that of the well-characterized alveolar 
surfactant binding proteins in the lung.

Synovial Fluid Formation

In healthy people a constant volume of synovial fluid is 
important during joint movement as a cushion for synovial 
tissue and as a reservoir of lubricant for cartilage. Many of 
the soluble components and proteins in synovial fluid exit 
the synovial microcirculation through pores or fenestrations 
in the vascular endothelium, then diffuse through the inter-
stitium before entering the joint space. Synovial fluid is in 
part a filtrate of plasma to which additional components, 
including HA and lubricin, are added and removed by the 
SLCs (Figure 2-10). As noted earlier, concentrations of 
electrolytes and small molecules in synovial fluid are similar 
to those in plasma. Synovial permeability to most small 
molecules is determined by a process of free diffusion 
through the double barrier of endothelium and interstitium, 
limited mainly by the intercellular space between SLCs. For 
most small molecules, synovial permeability is inversely 
related to the dimensions of the molecule.

Experimental evidence suggests that the exchange of 
small solutes is determined predominantly by the synovial 

film of protective fluid that allows one surface to ride freely 
over another. The cartilage matrix is integral to this phe-
nomenon because it is fluid filled and compressible. Loaded 
cartilage extrudes lubricant fluid from its surface, and 
expressed fluid contributes to the separation of the two 
articulating surfaces. Scanning electron microscopy has 
shown a continuous film of fluid, only 100 nm thick, that 
separates one surface from the other, preventing direct abra-
sive contact.90 This ultrathin coating of lubricant resists 
distraction of the two articulating surfaces, enhancing joint 
stability. In healthy joints, another essential advantage  
of an intra-articular lubrication system is the effective  
prevention of pinching of adjacent, well-vascularized syno-
vial membrane, a feature that is lost in the inflamed joint 
in which synovial membrane adheres to the cartilage 
surface.

Hyaluronic Acid.  HA, a high-molecular-weight polysac-
charide, is a major component of synovial fluid and carti-
lage.91 It is produced in large amounts by mechanosensitive, 
fibroblast-like synoviocytes.92,93 HA, which has three mam-
malian forms designated HAS1, HAS2, and HAS3,94 is 
synthesized by HA synthase at the plasma membrane and 
is extruded directly into the extra-cellular compartment. 
HA synthase activity and HA secretion are stimulated  
by pro-inflammatory cytokines, including IL-1β and TGF-
β.92,95,96 Interestingly, although the levels of cytokines are 
increased in arthritic joints, the synovial fluid concentra-
tion of HA decreases.97 HA is also synthesized by many 
other skeletal cells and is an important component of extra-
cellular matrices. It is simultaneously a solid phase matrix 
element of cartilage and other tissues and a fluid phase 
element in the synovial space under normal and abnormal 
conditions.

HA has many biologic functions, which include effects 
on cell growth, migration, and adhesion. The regulatory 
role of HA is mediated through HA-binding proteins and 
receptors, including CD44, which are present on the cell 
surfaces of chondrocytes, lymphocytes, and other mono-
nuclear cell populations. HA plays a crucial role in morpho-
genesis and in wound healing. HA also is a vital structural 
component of the synovial lining, and it has an essential 
role in the induction of joint cavitation during embryogen-
esis. HA, which is produced by synovium, was originally 
thought to be primarily a joint lubricant, and it is generally 
accepted that it plays a major physiologic role in maintain-
ing synovial fluid viscosity. HA is important in normal  
joint function, not least through its capacity to provide 
effective shock absorption. It has been suggested that HA 
is a particularly important viscohydrodynamic lubricant at 
low-load interfaces, such as synovium-on-synovium and 
synovium-on-cartilage.98 Synovial fluid HA, acting in com-
bination with albumin, has a role in the attenuation of fluid 
loss from the joint cavity, particularly during periods of 
increased pressure, which can occur during sustained joint 
flexion.99-101

Lubricin.  Compelling evidence suggests that lubricin, 
which was first described in the 1970s,102 is the factor pri-
marily responsible for boundary lubrication of diarthrodial 
joints.103 Lubricin, a large secreted, mucin-like proteoglycan 
with an apparent molecular weight of 280 kDa, is a product 
of the gene proteoglycan 4 (PRG4). It is a major component 
of synovial fluid and is present at the cartilage surface.  
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Figure 2-9  Clinical features of camptodactyly–arthropathy–coxa vara–pericarditis (CACP) syndrome. A, The characteristic deformity of the hands is 
shown. B, A chest radiograph shows an enlarged cardiac outline caused by pericarditis. C, radiograph of the pelvis highlights coxa vara in a boy with 
CACP. (B and C, Courtesy Ronald Laxer, MD, Hospital for Sick Children, Toronto, Ontario, Canada.)
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Figure 2-8  Clinical appearance and radiographic changes in Prg4−/− mice. A and B, Photographs of the hind paws of 6-month-old Prg4−/− (A) and 
wild-type (B) mice. Note the curved digits in the mutant mouse and swelling at the ankle joint. C and D, Radiographs of the ankle joint of 9-month-old 
wild-type (C) and Prg4−/− mice (D). Structures corresponding to the tibia (t) and talus (ta) are indicated. Note the calcification of structures adjacent to 
the ankle (arrows in D). E, Lateral knee radiograph of a 4-month-old wild-type mouse. Structures corresponding to the patella (p), femoral condyle (f), 
tibial plateau (t), and fibula (fib) are indicated. F, Lateral knee radiograph of a 4-month-old Prg4−/− mouse. Note the increased joint space between the 
patella and femur (arrow) and osteopenia of the patella, femoral condyles, and tibial plateau. G, Shoulder radiograph of a 4-month-old wild-type 
mouse. Structures corresponding to the humeral head (h), glenoid fossa of the scapula (s), and lateral portion of the clavicle (c) are indicated.  
H, Shoulder radiograph of a 4-month-old Prg4−/− mouse. Note the increased joint space between the humerus and scapula (arrow) and osteopenia of 
the humeral head. (From Rhee DK, Marcelino J, Baker M, et al: The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell over-
growth. J Clin Invest 115:622–631, 2005.)
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