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Series Preface

Is there an unmet need for a new MRW series in Endocrinology and Metabolism? It
might not seem so! The vast number of existing textbooks, monographs, and
scientific journals suggest that the field of hormones (from genetic, molecular,
biochemical, and translational to physiological, behavioral, and clinical aspects) is
one of the largest in biomedicine, producing a simply huge scientific output.
However, we are sure that this new series will be of interest for scientists, academics,
students, physicians, and specialists alike.

The knowledge in Endocrinology and Metabolism is almost limited to the
two main (from an epidemiological perspective) diseases, namely hypo/hyperthy-
roidism and diabetes mellitus, now seems outdated and closer to the interests of
the general practitioner than to those of the specialist. This has led to endocrinology
and metabolism being increasingly considered as a subsection of internal
medicine rather than an autonomous specialization. But endocrinology is much
more than this.

We are proposing this series as the manifesto for Endocrinology 2.0, embracing
the fields of medicine in which hormones play a major part but which, for various
historical and cultural reasons, have thus far been “ignored” by endocrinologists.
Hence, this MRW comprises “traditional” (but no less important or investigated)
topics: from the molecular actions of hormones to the pathophysiology and man-
agement of pituitary, thyroid, adrenal, pancreatic, and gonadal diseases, as well as
less common arguments. Endocrinology 2.0 is, in fact, the science of hormones, but
it is also the medicine of sexuality and reproduction, the medicine of gender
differences, and the medicine of well-being. These aspects of Endocrinology have
to date been considered of little interest, as they are young and relatively unexplored
sciences. But this is no longer the case. The large scientific production in these fields
coupled with the impressive social interest of patients in these topics is stimulating a
new and fascinating challenge for Endocrinology.

The aim of the MRW in Endocrinology is thus to update the subject with the
knowledge of the best experts in each field: basic endocrinology, neuroendocrinol-
ogy, endocrinological oncology, pancreatic disorders, diabetes and other metabolic
disorders, thyroid, parathyroid and bone metabolism, adrenal and endocrine
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hypertension, sexuality, reproduction, and behavior. We are sure that this ambitious
aim, covering for the first time the whole spectrum of Endocrinology 2.0, will be
fulfilled in this vast Springer MRW in Endocrinology Series.

Andrea Lenzi M.D.
Emmanuele A. Jannini M.D.
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Volume Preface

Generally speaking, the ultimate scope of life is maintenance of the species, which is
ensured by reproduction. Reproduction depends on exquisite endocrine signals,
which start during fetal life, are dormant during childhood, mature and attain full
function at the end of puberty, and variably decline thereafter in a gender-dependent
fashion. Therefore, if hormones are essential for life of individuals, reproductive
hormones are in addition essential for the maintenance of species. Turned in another
way, if some hormonal defects are deadly for the individual, reproductive failure
may be deadly for the species. This book illustrates what hormones do for male
reproduction, in which way they govern the pathophysiology of the hypothalamo-
pituitary-gonadal axis, and, more generally, how they are implicated in the mainte-
nance of the human species.

The book has been compiled by the world experts of the field, both in basic and
clinical science. It aims at providing a comprehensive view of the current knowledge
ranging from molecular, genetic, and cellular mechanisms to clinical manifestations
of male reproductive physiology and its disorders to therapeutic perspectives. Male
reproduction is a sensitive issue, with wide socioeconomical and ethical implica-
tions, which has been covered as well.

Each chapter of this book is meant to stand on itself as a reference work in its
field. It has been written with human male reproduction in mind, but it also covers
the animal research relevant to understand the clinical problems andrologists and
male reproductive endocrinologists may encounter in their everyday practice.

We are grateful to all distinguished colleagues who generously contributed to this
work with their knowledge and experience. We are confident that the readership will
find clear answers to their curiosity, to improve their clinical skills and to stimulate
them to more creative research in this fascinating field.

Manuela Simoni
Ilpo T. Huhtaniemi
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Control of GnRH Secretion 1
Marco Bonomi, Valeria Vezzoli, and Anna Cariboni

Abstract
Human reproduction and fertility are completely dependent upon neuroendocrine
control of the hypothalamus-pituitary-gonadal (HPG) axis and its hierarchy of
secreted hormones. The human reproductive system is controlled by the hypo-
thalamus through the decapeptide gonadotropin-releasing hormone (GnRH),
which displays a remarkable conservation over millions of years of evolution in
the different species. The neurosecretion of GnRH depends on less than 4,000
GnRH-secreting neurons, which have an extracranial origin and finally migrate
into the hypothalamic preoptic area. They secrete GnRH starting from the tenth
week of gestation till the first 4–6 months of life, when GnRH secretion is
“switched-off” until puberty. At puberty, the GnHR secretion is switched back
“on” with a characteristic pulsatile manner that is maintained during adulthood.
Regulation of GnRH-secreting neuron activity through the lifespan is not
completely understood, but is clearly the result of a sophisticated network of
stimulatory and inhibitory inputs, that include centrally different subgroups of
neurons afferent to the GnRH-secreting neurons and peripherally the gonadal
steroid feedback. The present chapter of the Textbook will focus on the ontogeny
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of the GnRH-secreting neurons and the mechanisms so far known to be impli-
cated in regulating their neurosecretory activity.

Keywords
Gonadotropin-releasing hormone • GnRH receptor • GnRH-secreting neurons •
Kisspeptin • KNDy
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Neuroendocrine control of the hypothalamus-pituitary-gonadal (HPG) axis and
hormones forms the base of human reproduction and fertility. A small number of
neurons, scattered throughout different hypothalamic areas, secrete the neurohor-
mone gonadotropin-releasing hormone (GnRH), which subsequently reaches the
adenohypophysis through the pituitary portal vessels. Inside the pituitary, GnRH
stimulates synthesis and release of the two gonadotropins, the luteinizing hormone
(LH) and the follicle-stimulating hormone (FSH), by interacting with its specific
receptor, the GnRHR which is expressed on the membrane of the gonadotrope cells.
The two gonadotropins enter the systemic circulation and reach the gonads where
they promote steroidogenesis (estrogen, progesterone, and androgens) and gameto-
genesis (oocytes and spermatozoa). Gonadal steroids, in turn, autoregulate their own
secretion through a feedback mechanism, which determines a decrease of GnRH and
gonadotropin secretion at the central level of the HPG axis.

The first suggestion of a hypothalamic site of control of the reproductive system
came from the original findings of Harris in 1937 and his following “neurohumoral
theory” (Harris 1955), which postulated that the secretion of each adenohypophyseal
hormone would be controlled by a corresponding hypothalamic neuropeptide.
Indeed, only some years later, the first such hypothalamic releasing hormone was
identified, thyrotropin-releasing hormone (TRH) (Boler et al. 1969; Burgus et al.
1970), closely followed by the discovery and purification of GnRH (Amoss et al.
1971; Baba et al. 1971; Matsuo et al. 1971; Schally et al. 1971). Following this, the
role of GnRH as a crucial regulator of the HPG axis became progressively clearer
(Conn and Crowley 1994; Millar et al. 2001).

Comparison of the GnRH sequence from different species reveals a remarkable
evolutionary conservation of over millions of years in the peptide length (ten amino
acids), the N-terminus (Glu-His-Trp-Ser) and the C-terminus (Pro-Gly-NH2)
(Fig. 1), supporting the crucial role of these sequences in receptor binding and
activation. In humans, the gene encoding GnRH consists of four exons and is
mapped to 8p.11.2-p.2p21 (Fig. 2) (Yang-Feng et al. 1986; Radovick et al. 1990).
GnRH cDNA comprises an open reading frame of 276 base pairs, which encodes a
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precursor protein, subsequently cleaved and processed by a peptidase into secretory
granules. The initial 23 amino acids of the prohormone correspond to a signal
sequence, which is followed by the mature GnRH, the GKR sequence, and the
56-amino acid GnRH-associated protein, GAP (Fig. 2). The precise role of GAP is
not known but is believed to have prolactin release inhibitory activity (Nikolics et al.
1985; Chavali et al. 1997).

Other GnRH isoforms exist and are expressed together with the “classic” type
1 GnRH (GnRH1) (Fig. 1). GnRH2 isoform presents a different amino acid sequence
at positions 5, 7, and 8 and is expressed in humans, while GnRH3 has thus far only
been found in some classes of fish. In humans, the gene encoding GnRH2 has been
cloned and mapped to chromosome 20p13. It consists of four exons, separated by
three introns, encoding a predicted prohormone similarly organized to that of the
GnRH1 precursor. However, the human GnRH1 gene (5 kb) is longer than the
GnHR2 gene (2.1 kb) due to larger introns 2 and 3. The expression of the GnRH1
and GnRH2 genes is controlled by different promoters, suggesting different tran-
scriptional regulations (White et al. 1998; Kim 2007). The two GnRH isoforms
exhibit an overlapping pattern of tissue expression, which includes the central

1 2 3 4 5 6 7 8 9 10
Mammalian pGlu- His- Trp- Ser- Tyr- Gly- Leu- Arg- Pro- Gly- NH2

Guinea Pig pGlu- His- Tyr- Ser- Tyr- Gly- Val- Arg- Pro- Gly- NH2

Chicken I pGlu- His- Trp- Ser- Tyr- Gly- Leu- Gln- Pro- Gly- NH2

Chicken II pGlu- His- Trp- Ser- His- Gly- Trp- Tyr- Pro- Gly- NH2

Salmon pGlu- His- Trp- Ser- Tyr- Gly- Trp- Leu- Pro- Gly- NH2

Dogfish pGlu- His- Trp- Ser- His- Gly- Trp- Leu- Pro- Gly- NH2

Catfish pGlu- His- Trp- Ser- His- Gly- Leu- Gln- Pro- Gly- NH2

Herring pGlu- His- Trp- Ser- His- Gly- Leu- Ser- Pro- Gly- NH2

Medaka pGlu- His- Trp- Ser- His- Gly- Leu- Ser- Pro- Gly- NH2

Lamprey I pGlu- His- Tyr- Ser- Leu- Glu- Trp- Lys- Pro- Gly- NH2

Lamprey II pGlu- His- Trp- Ser- His- Gly- Trp- Phe- Pro- Gly- NH2

LampreyIII pGlu- His- Trp- Ser- His- Asp- Trp- Lys- Pro- Gly- NH2

Frog pGlu- His- Trp- Ser- Tyr- Gly- Leu- Trp- Pro- Gly- NH2

Seabream pGlu- His- Trp- Ser- Tyr- Gly- Met- Ser- Pro- Gly- NH2

Tunicate I pGlu- His- Trp- Ser- Asp- Tyr- Phe- Lys- Pro- Gly- NH2

Tunicate II pGlu- His- Trp- Ser- |Leu- Cys- His- Ala- Pro- Gly- NH2

Whitefish pGlu- His- Trp- Ser- Tyr- Gly- Met- Asn- Pro- Gly- NH2

GnRH-I
pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2

1     2     3     4     5     6      7     8     9    10

GnRH-II
pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2

1     2     3     4     5     6     7     8     9    10

a

b

Fig. 1 (a) Comparison of GnRH amino acid sequences through evolution of protochordates to
mammals. Grey regions indicate conserved N- and C-terminal residues throughout the evolution,
indicating their important functional role. (b) GnRH isoform in humans
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nervous system and the reproductive organs (ovary, prostate, endometrium, breast,
and placenta) (Hong et al. 2008), but GnRH2 is also expressed more widely outside
the CNS (Skinner et al. 2009). Indeed, the expression of GnRH2 is primarily
detectable in the kidney, prostate, and bone marrow, suggesting both reproductive
and nonreproductive roles for this isoform. On the other hand, GnRH1 immunore-
activity is detected not only in the hypothalamus but also in some specific human
pituitary cell types, such as thyrotropes and somatotropes, thus indicating a possible
supplementary role in the pituitary. Moreover, GnRH2 neurons do not show the
same origin of GnRH1 neurons in the olfactory placode and, to a lesser extent, the
neural crest (see also below), and the two neuronal populations undergo different
regulation by gonadal steroids (Khosravi and Leung 2003).

The short half-life (approximatively few minutes) is due to its rapid cleavage
exerted by specific peptidases. Since GnRH is rapidly degraded and largely diluted,
it is not possible to precisely measure it in the peripheral bloodstream once it has left
the hypophyseoportal circulation. Thus, in humans, the measurement of the two
gonadotropins (LH and FSH) is commonly used in the clinical practice as marker of
the regular GnRH hypothalamic secretion. Of the two gonadotropins, LH pulses
more accurately mirror the GnRH pulses in frequency and amplitude, as also
demonstrated in the ewes (Clarke and Cummins 1985), because the longer half-
life of FSH can mask FSH secretory troughs between pulses.

Development and Migration of GnRH-Secreting Neurons

Despite their anatomical position within the adult brain, during development GnRH
neurons have an extracranial origin. The embryonic development of these cells,
which is a conserved process that involves few hundred neurons per hemisphere in

Fig. 2 Human GnRH gene consisting of four exons located on the short arm of chromosome
8. Exon 1 encodes a 50 untranslated region (50UTR); Exon 2 encodes the 23 amino acid Signal
Peptide (SP), the GnRH decapeptide, the GKR processing sequence, and initial 11 amino acid of the
GnRH-associated peptide (GAP); Exon 3 encodes the next 32 amino acid of GAP; Exon 4 encodes
the remainder of GAP and an 30UTR
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mice (a few thousand in humans), has been extensively studied in mice and other
species and is extremely important for the establishment and maintenance of repro-
duction (Wray 2010). Such studies have highlighted the physical and molecular
connection of GnRH neurons with the olfactory system. Thus, GnRH neurons,
which can be visualized on sections with in situ hybridization and/or immunohisto-
chemistry protocols, are first detected in mice in the nasal placode, a structure which
gives rise to the vomeronasal organ (VNO) and the olfactory epithelium at around
embryonic day (E) 10.5. Whether GnRH neurons originated entirely within the nasal
placode, or were just associated with this region, was for a long time a theme of
debate; the current prevailing view is that neural crest-, as well as placodal-derived,
cells also contribute to the mature GnRH neuron population.

Following fate specification, GnRH neurons migrate in association with axons of
the olfactory/terminal/vomeronasal nerves within the nasal section to reach their
definitive position in the forebrain (Hutchins et al. 2013). It is also well established
that GnRH neurons co-migrate with other cell populations including other neurons
(Fornaro et al. 2003) and neural crest-derived olfactory ensheathing cells (OECs)
(Geller et al. 2013; Raucci et al. 2013).

Specifically, GnRH neurons first migrate within the nasal compartment along the
intermingled olfactory and terminal-vomeronasal axons, whose cell bodies are
located in the olfactory epithelium (OE) and VNO, respectively. Then, once they
have reached the nasal-forebrain junction, GnRH neurons make a pause and enter
the brain close to the olfactory bulbs. Within the brain, GnRH neurons associate with
a transient axonal scaffold, formed by the caudal ramification of the vomeronasal
nerve (Fig. 3), which drive the neurons toward the future hypothalamus, where they
will set, in mice, at around E18.5. GnRH neuron migration is axophilic, in which the
axons of the olfactory and vomeronasal nerves form a scaffold along which GnRH
neurons migrate (Marin and Rubenstein 2003). The development of the GnRH-
neuroendocrine system is also dependent on the olfactory system. In mammals,
olfaction depends on sensory neuronal cells located in the OE and in the VNO, two
epithelial structures present in the nose (Mombaerts 2001). The sensory neurons
located in the OE are specifically detecting volatile substances and provide infor-
mation on the external environment. Instead, the neurons placed in the VNO, at least
in animals, perceive pheromones, which are not volatile chemicals that mediate
reproductive and social behaviors, as well as changes in the neuroendocrine system.

Olfactory neurons send their axons to the principal olfactory bulb, where they are
connecting with tufted and mitral cells to form the “glomeruli” (Farbman and
Buchholz 1992). Similarly, the vomeronasal neurons are projecting to the accessory
olfactory bulb. In humans, it has been recently reported the existence of a potential
VNO, which role is still controversial (Dulac and Axel 1995; Stern and McClintock
1998).

Despite the possible functional role of the VNO in humans, it is now established
that GnRH neuron maturation and therefore fertility depend on olfactory and
vomeronasal neuron development.

In addition to extending olfactory and vomeronasal neuron axons, other cells
leave the nasal placode and migrate toward the forebrain. Altogether, the migratory
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cells and the extending axons form the so-called migratory mass. A first population
of GnRH-negative neurons emerges from the nasal placode before the extension of
olfactory axons; the role of these early migratory cells is to establish a scaffold used
by the extending olfactory axons later on (Croucher and Tickle 1989; De Carlos et al.
1995; Maier and Gunhaga 2009). Cell populations that migrate later include GnRH
neurons, OMP-positive and acetylcholine esterase-positive cells, and glial OECs
(De Carlos et al. 1995; Miller et al. 2010).

OECs are the glial cell component of the olfactory system and derive from neural
crest. Recent studies (Barraud et al. 2013; Geller et al. 2013) have highlighted that
OECs form a microenvironment suitable for GnRH neuron migration, by secreting
trophic factors; these cells also ensheathe olfactory neurons and regulate their
fasciculation/defasciculation and subsequently the correct formation of the scaffold
along which GnRH neurons migrate.

Fig. 3 Schematic drawing of a mouse sagittal section showing the migration of GnRH neurons
(green cells), olfactory ensheating cells (OECs, blue cells), and the patterning of olfactory and
vomeronasal axons (orange, pink, and blue lines), emerging from the olfactory epithelium (oe) and
the vomeronasal organ (vno). To enter the forebrain (fb) and position in the hypothalamus (hyp),
GnRH neurons follow the caudal branch of the vomeronasal nerve (cVNN)

8 M. Bonomi et al.



Interestingly, the discovery of OECs as neural crest derivatives is offering novel
insights into the etiopathogenesis of human diseases such as Kallmann syndrome
(KS) that, besides GnRH deficiency, often displays several neural crest defects.

In humans, the time of GnRH neuron appearance and their pattern of migration
have been determined by performing immunolocalization studies on human
embryos (Schwanzel-Fukuda et al. 1996). In embryos of 42 days of development,
GnRH immunoreactivity is revealed in epithelial cells of the medial nasal placode, in
cells along the terminal nerve in the nasal septum with a similar trajectory observed
in mouse embryos toward the forebrain. Concomitant to the migrating GnRH
neurons, bundles of fibers expressing the adhesion molecule N-CAM and serving
as guides for migrating GnRH neurons are found to elongate form the olfactory pit
into the forebrain.

Further evidence of the origin and initial migration of GnRH neurons arises from
the analysis of a human fetus, the single so far analyzed, carrying a mutation in the
KAL1/ANOS1 gene, which causes the X-linked form of KS; in this fetus, GnRH
neurons did not enter the forebrain, and they gathered together in the cribriform plate
in a tangle of neurons and olfactory/vomeronasal nerves (Schwanzel-Fukuda et al.
1989).

Besides KAL1/ANOS1 other causal genes have been discovered so far in patients
with GnRH deficiency (Vezzoli et al. 2016), and they account, altogether, for only
35–45% of the cases. This is because genetic linkage studies have proven difficult to
identify further causative genes, as most pedigrees are small due to infertility, and
because sporadic mutations cannot be identified with this technique. Thus,
researchers in the field have adopted different experimental paradigms, including
immortalized GnRH neuron cell lines (Cariboni et al. 2004), nasal explants (Fueshko
and Wray 1994; Tobet et al. 1996) and genetically modified mouse models, to study
the molecular mechanisms of GnRH neuron development and, ultimately, to predict
new candidate causative genes underlying the etiopathogenesis of KS and hypo-
gonadotropic hypogonadism (HH). These studies have identified some of the molec-
ular mechanisms that directly or indirectly regulate GnRH neuron development:
these include transcription factors, i.e., Ebf2 (Corradi et al. 2003), neurotransmitters,
i.e., GABA (Wray et al. 1996), adhesion molecules, i.e., N-CAM (Yoshida et al.
1999), and classical secreted cues such as semaphorins (Giacobini et al. 2008;
Cariboni et al. 2011, 2015; Messina et al. 2011 ), Slits (Cariboni et al. 2012), ephrins
(Gamble et al. 2005), and SDF-1(Schwarting et al. 2006).

For example, by applying mouse models and cell lines, it has been recently
proved that the semaphorin SEMA3A is playing a key role in axon guidance in
mice during development of the GnRH neuron (Cariboni et al. 2011), and subse-
quently genetic variations in SEMA3A in patients with KS have been identified
(Hanchate et al. 2012; Young et al. 2012). These and other studies (Pitteloud et al.
2010) show that genetic mouse models are esteemed tools to uncover new causal
genes for HH/KS and, when combined to next-generation sequencing (NGS) tech-
niques, will help to validate the functional relevance of the novel genes in the GnRH
system.
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GnRH-Secreting Neuron Function and GnRH Secretion

Pulsatile GnRH Secretion Throughout Lifespan

The activity of human GnRH-secreting neurons is detectable in the hypothalamus by
the tenth week of gestation followed by secretion of the two gonadotropins, which
are present by the 10th–13th week of gestation when the hypophyseal portal system
has developed (Fig. 4). Their secretion continues until the mid-gestation period when
the typical surge of the placental steroids, via a negative feedback mechanism,
causes a decrease, which is maintained until delivery. Indeed, after birth, the lack
of this inhibition gives rise to a new surge in GnRH secretion. This central stimu-
lation of the HPG axis is typical of the first 12–24 or 6 months of life in girls and
boys, respectively, and it is so-called minipuberty. Subsequently and due to inhib-
itory mechanisms that are not fully understood and might involve the neurotrans-
mitters γ-aminobutyric acid (GABA) and the neuropeptide Y (NPY), GnRH, LH,
and FSH levels decrease and remain suppressed until puberty (Fig. 4) (Waldhauser
et al. 1981; Blogowska et al. 2003). At puberty, GnRH and gonadotropin secretion
resumes with a typical pulsatile manner, which is controlled by the GnRH pulse
generator. The neurobiological origins and the precise location of this pulse gener-
ation are not yet fully elucidated. Recent work supports two possible hypotheses:
(i) the GnRH-secreting neurons are able to generate autonomously the secreting
pulses; (ii) the pulse generator is due to the influence of peptidergic neurons usually
positioned in the infundibular region (INF) and in the hypothalamic arcuate nucleus
(ARC) (Piet et al. 2015; Plant 2015). The pulsatile secretion of GnRH at puberty
begins first at night with a low amplitude and slow frequency, and then both
amplitude and frequency increase during pubertal development to achieve the
normal pattern in adulthood (Fig. 4) (McCartney 2010). In adult men, GnRH
secretion is characterized by pulses occurring approximately every 2 h, whereas in
the fertile female, the frequency of GnRH pulse is more complicated and is intrin-
sically dependent on the timing of the ovulatory cycle. GnRH pulsatility is crucial in
regulating the synthesis, secretion, and ratio release of the two gonadotropins from

Fig. 4 Representation of the GnRH pulsatile secretion variation during the male lifespan
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the pituitary (Fig. 4) (Reame et al. 1984; Nippoldt et al. 1989; Hall et al. 1992), and it
is dependent on the fine-tuned modulation of the GnRH-secreting neurons as firstly
demonstrated by Knobil and colleagues (Knobil 1992). Indeed, in patients affected
by isolated GnRH deficiency, the substitutive use of pulsatile exogenous GnRH
allows the pubertal development to occur (Marshall and Kelch 1979; Hoffman and
Crowley 1982) and reproduces the hormonal changes normally seen in the menstrual
cycle, thus stimulating the ovulation (Crowley andMcArthur 1980). On the contrary,
when GnRH is infused continuously, it is inhibiting the gonadotropin secretion,
while the return to a pulsing stimulation is able to revert this negative effect. The
molecular explanation for this phenomenon resides in the downregulation of the
GnRHR (Loumaye and Catt 1982; Cheng et al. 2000; McArdle 2012), and this
characteristic is currently used in the clinic to temporarily block the HPG axis
through the administration of long-acting GnRH agonists. This downregulation of
the GnRHR on the gonadotrope cells, when continuously stimulated, gives reason of
the importance of the normal pulsatile GnRH secretion in order to induce the
synthesis and release of the two gonadotropins from the pituitary.

Regulation of GnRH Secretion

The mechanisms regulating GnRH secretion are extremely complex. Studies on
immortalized GnRH-secreting neurons (GT1) (Mellon et al. 1990), on primary
GnRH neurons (Tobet et al. 1996; Maurer and Wray 1997), and in animal models
(Negro-Vilar et al. 1982; Gore and Terasawa 1991; Levine et al. 1995) show that
GnRH secretion is modulated by a network of excitatory and inhibitory inputs that
include either a central control exerted by distinct subgroups of neurons afferent to
the GnRH-secreting neurons or the peripheral gonadal steroid feedback (Fig. 5)
(Ojeda et al. 2006; Christian and Moenter 2010; Herbison 2016).

Central Control by Kisspeptin Neuronal System
The identification of the hypothalamic kisspeptin neuronal network has deeply
changed our perceptions of the control and activation of GnRH-secreting neurons
at puberty. Indeed, kisspeptin (formerly known as metastin) is a strong activator of
the hypothalamic-pituitary-gonadal axis in humans and animal models. It is encoded
by the KISS1 gene (chromosome 1q32) which consists of two untranslated and two
coding exons. KISS1 gene encodes a precursor of 145 amino acid, which cleavage
generates a 54 amino acid peptide (West et al. 1998), subsequently processed in two
smaller fragments, kisspeptin-13 and kisspeptin-14. Kisspeptin binds to GPR54
(now termed KISS1R) (Gottsch et al. 2004), described both in the rat and in
human brain (Lee et al. 1999; Muir et al. 2001; Ohtaki et al. 2001). The five exons
of the KISS1 receptor gene (chromosome 19p13.3) encode for a 398 amino acid
G-protein-coupled receptor (Muir et al. 2001). Kisspeptin-mediated KISS1R activa-
tion (Muir et al. 2001; Liu et al. 2008; Constantin et al. 2009) determines a biphasic
surge of cytosolic Ca2+ concentration with a more persistent second phase (Min et al.
2014). In order to support this second phase and to prevent receptor desensitization
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following the first activation, an intense KISS1R trafficking is needed (Min et al.
2014).

The key role played by kisspeptin system became evident from studies performed
in a model of human disease which is represented by patients with congenital GnRH
deficiency. Indeed, patients with inactivating allelic variants of either KISS1R or
KISS1 resulted in idiopathic hypogonadotropic hypogonadism (de Roux et al. 2003;
Seminara et al. 2003; Topaloglu et al. 2012). This evidence was supported by studies
in knockout mouse models for either the Kiss1r or the Kiss1 genes, which pheno-
copy the human GnRH congenital deficiency (d’Anglemont de Tassigny et al. 2007;
Lapatto et al. 2007; Chan et al. 2009). Thus, the crucial importance of the kisspeptin
effect on the GnRH secretion became evident across mammalian species. Moreover,
clinical studies involving the administration of kisspeptin to both healthy controls
and patients with idiopathic hypogonadotropic hypogonadism further confirmed the
importance of the kisspeptin system in the control of the GnRH neuron activity
(Dhillo et al. 2005; Jayasena et al. 2009, 2010, 2011; George et al. 2011; Chan et al.
2012; Young et al. 2013). Indeed, the acute injection of exogenous kisspeptin is able

Fig. 5 Summary of the physiological mechanisms possibly involved in the control of GnRH
secretion and its action on gonadotrope cells. POA preoptic area, INF infundibular region, ARC
arcuate nucleus, Kp Kisspeptin, NKB neurokinin B, DYN dynorphin, RFRP-3 RFamide-related
peptide, E2 estradiol, GABA gamma aminobutirric acids, NPY neuropeptide Y, NA noradrenaline,
EOP endogenous opioid peptides, NE/DA Norepinephrine/Dopamine, KISS1R Kiss1 receptor,
GnRHR GnRH receptor, GPR147 RFP-3 receptor, KOR kappa-opioid receptor, NKB3R neurokinin
B receptor, ERa estrogen receptor alpha, GC-R Glucocorticoid receptor.
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to induce the rise of LH and FSH in male healthy volunteers, while its action in
female is variably dependent on the period of the menstrual cycle. Furthermore,
non-chronical administration of kisspeptin (in order to avoid the receptor desensiti-
zation) is also effective in stimulating GnRH secretion in men with acquired
hypogonadotropic hypogonadism associated with obesity and type 2 diabetes
(George et al. 2010) and in female with hypothalamic amenorrhea (Jayasena et al.
2010).

Kisspeptin Neurons
The majority of the studies on the Kisspeptin system have been performed in
rodents, but many correlations with higher mammals have been found. Kisspeptin
neurons are positioned in the infundibular (INF)/arcuate (ARC) nucleus in all
species and in the rostral preoptic area (POA) with a species-specific distribution
(Clarkson and Herbison 2006; Pompolo et al. 2006; Ramaswamy et al. 2008;
Clarkson et al. 2009; Hrabovszky et al. 2010): in rodents, they are positioned in
the periventricular nucleus (PeN) and the anteroventral periventricular nucleus
(AVPV) (Clarkson and Herbison 2006; Clarkson et al. 2009), while in humans and
ruminants, their cell bodies are more sprinkled within the POA (Pompolo et al. 2006;
Rometo et al. 2007; Oakley et al. 2009; Hrabovszky et al. 2010). Moreover, in
humans there is also a sexual dimorphism in respect to the kisspeptin neuron
distribution and numerosity. Female hypothalamus have considerably more
kisspeptin fibers and cell bodies in the INF nucleus compared to men hypothalamus
(Hrabovszky et al. 2010). Furthermore, kisspeptin cells are detected in the rostral
periventricular area only in female (Hrabovszky et al. 2010). This different hypo-
thalamic architecture of the kisspeptin system in male and female, as discussed in the
next section of the chapter, has been linked to the different effect of the sex steroids
on this cell population.

Kisspeptin neurons may act both directly or transsynaptically through neurotrans-
mitters (Skorupskaite et al. 2014). The close proximity between the kisspeptin- and
GnRH-secreting neurons seen in rodents, sheep, and monkeys was also seen in
humans, where kisspeptin axons form dense pericapillary plexus in the pituitary
stalk, engaging contacts with the GnRH neuron cell body, axons, and dendritic spine
(Hrabovszky et al. 2010) (Fig. 5). However, in humans the occurrence of these
connections seems lower, and not all GnRH neurons receive kisspeptin neuronal
contacts (Clarkson and Herbison 2006; Ramaswamy et al. 2008; Smith et al. 2008a;
Hrabovszky et al. 2010). This indicates a fine modulation of GnRH release by
kisspeptin and other neuropeptides. Indeed, in the hypothalamus an interconnected
and composite system of modulators of kisspeptin neurons has been identified,
including neuroendocrine factors and sex steroids (see below), that guarantees the
correct gonadotropic function (Fig. 5).

KNDy Neurons
Inside the hypothalamus, two kisspeptin neuron populations are present with a
differential expression of neuropeptides (Fig. 5) and distinct functions (Ojeda et al.
2010). In addition to neurons that exclusively express and secrete kisspeptin, there
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are other neurons, designated as KNDy neurons (Cheng et al. 2010), which are
co-expressing kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dyn) (Lehman
et al. 2010; Hrabovszky et al. 2012; Navarro 2012; Skrapits et al. 2015). KNDy
neurons are preserved among species and are localized in the ARC nucleus of sheep
and rodents and in the corresponding INF region of humans (Burke et al. 2006;
Goodman et al. 2007; Navarro et al. 2009). The three secreted KNDy neuropeptides
shape kisspeptin secretion through paracrine/autocrine action, operating in a coor-
dinated fashion (Fig. 5). KNDy neurons in the ARC form a complex system where
individual neurons are interconnected to each other and project the median eminence
(ME) (Lehman et al. 2010). Moreover in humans it was observed that KNDy
neurons are in straight relationship with GnRH neuron cell body and dendrites
(Ciofi et al. 1994; Krajewski et al. 2005; Clarkson and Herbison 2006; Ramaswamy
et al. 2008; Dahl et al. 2009). This distribution suggests that KNDy neurons located
in ARC/INF act as a central hub for the regulation of GnRH release. They stimulated
GnRH neurons via the release of kisspeptins, but they also participate in the mutual
(auto)-regulation of kisspeptin system through the secretion of NKB and Dyn
(Navarro et al. 2009; Wakabayashi et al. 2010). NKB pathway is able to stimulate
LH release, which mirrors GnRH release (Billings et al. 2010; Navarro et al. 2011).
These stimulatory activities are in accordance with the altered reproductive defects
observed in TAC3- and TACR3-mutated patients (Topaloglu et al. 2009; Gianetti
et al. 2010; Young et al. 2010). In contrast, dynorphin, working via K-opioid
receptors (KOR), exerts its inhibitory control on pulsatile GnRH release
(Wakabayashi et al. 2010) by mediating the negative feedback of progesterone, as
discussed in the next section (Goodman et al. 2004; Foradori et al. 2005). Addition-
ally, although the principal target of kisspeptin stimulation pathway is the control of
GnRH secretion (Gottsch et al. 2004; Irwig et al. 2004; Smith et al. 2008b), the
expression of KISS1 and KISS1R genes in the gonadotropes suggests a possible
direct effect of kisspeptin on gonadotrope functionality. Indeed some studies have
demonstrated that pituitary explants stimulated with kisspeptin secrete gonadotro-
pins (Kotani et al. 2001; Navarro et al. 2005; Gutierrez-Pascual et al. 2007; Richard
et al. 2008) and that in the sheep low amount of kisspeptin is present in the pituitary
portal vessels (Smith et al. 2008b).

Gonadal Steroid Regulation
Another important mechanism that controls dynamically the GnRH synthesis and
release from the GnRH-secreting neurons is represented by the gonadal steroid
feedback. Indeed, in both sexes the severe deprivation of estrogens (E), androgens
(A), and progesterone (P), such as in human females menopause, after castration or
due to gonadal dysgenesis, triggers an increase in the secretion of GnRH and of
gonadotropins, which, in turn, is controverted by the substitutive therapy (Kalra and
Kalra 1989; Herbison 2016). The idea that sex steroids modulate the release of
GnRH and gonadotropins was postulated for the first time in the 1930s, although
several aspects concerning their precise molecular mechanisms of action are still not
fully understood. Whether the sex steroids exert their regulatory functions on the
GnRH neurons directly or through intermediate connected pathways or neurons is
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still debated. Direct action of gonadal steroids on the GnRH cells would imply the
expression of specific receptors. Indeed, estrogens bind to two specific nuclear
receptors isoforms: the estrogen receptor alfa (ERα) and the estrogen receptor beta
(ERβ), but the presence of the ERα on the GnRH-secreting neurons is still debated,
and only recently some studies were detecting the ERα mRNA in these cells
(Herbison and Pape 2001; Hu et al. 2008). In addition, after the discovery of a
second ER isoform, the ERβ (Kuiper et al. 1996; Mosselman et al. 1996), a small
subgroup of GnRH neuron, was found to express this isoform (Butler et al. 1999;
Skynner et al. 1999; Hrabovszky et al. 2000; Kallo et al. 2001). Moreover, in vitro
studies have demonstrated the presence of ERs in the immortalized GT1 cell line.
Therefore, it is also possible that GnRH neurons are temporally expressing the ERs,
and the direct action of E on these neurons might exist only during embryogenesis
and/or during the early stages of postnatal life. This possibility could be also
extended to the A receptor, AR, which is not expressed in vivo in GnRH neurons
(Huang and Harlan 1993), while detectable in vitro in the GT1 cells (Poletti et al.
1994; Belsham et al. 1998). Nevertheless, regarding the effects of A on GnRH
secretion, we have to consider that testosterone is enzymatically converted through a
specific aromatase into E, which is mediating its principal negative effect on the
HPG axis. Lastly, even the expression of the P receptor, PR, on the GnRH neurons is
still controversial, thus keeping open the question whether the P regulatory effect is
directly exerted on GnRH neurons or indirectly through neuronal intermediates. P is
important in the regulation of the GnRH secretion at the hypothalamic level
(Ramirez et al. 1980; Kim et al. 1989), although its action occurs mainly at the
pituitary level where, acting in synergy with E, it induces a full gonadotrope
response to GnRH (Nippoldt et al. 1987; Mahesh and Brann 1998).

Following the characterization of the kisspeptin system, further important
improvements in our comprehension of the central control of reproduction became
possible, including the elucidation of the molecular mechanisms underlying the sex
steroid feedback on GnRH neuronal activity. Indeed, kisspeptin system is implicated
in the transmission of both negative and positive feedback of sex steroids on GnRH
neurons. Accordingly the majority of the hypothalamic kisspeptin-secreting cells,
including KNDy neurons, express ERα, AR, PR, and, in a small proportion, ERβ,
while GnRH neurons do not (Smith et al. 2005a, b, 2006, 2007, Franceschini et al.
2006; Adachi et al. 2007; Clarkson et al. 2008, 2012). Moreover, Kiss1 mRNA
expression level in the ARC/INF is upregulated following gonadectomy, in accor-
dance with the rise of the gonadotropins levels, while this effect is prevented by the
estradiol replacement (Smith et al. 2006; Adachi et al. 2007; Clarkson et al. 2008;
Oakley et al. 2009; Lehman et al. 2010). Additionally, KissR inactivation, either as
in the KO animal model (Dungan et al. 2007) or in the presence of a specific Kiss1
antagonist (Roseweir et al. 2009), mitigates the rise in circulating LH after gonad-
ectomy. The E negative feedback on the kisspeptin system is mainly dependent upon
ERα. Indeed, the administration of an ERα-selective agonist suppresses Kiss1
mRNA expression and LH blood concentrations in castrated animals (Navarro
et al. 2004), while the LH increase after castration is absent only in the ERα KO
mice and still present in the ERβ null mice (Dungan et al. 2007). Thus, E exerts its
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negative feedback on the kisspeptin system, mainly through the ERα, by inhibiting
kisspeptin and neurokinin B secretion, which, in turn, lowers their synergic stimu-
lation on the GnRH neurons (Fig. 5). Moreover, dynorphin, which is normally
co-secreted with kisspeptin and neurokinin B from the KNDy neurons, is able to
inhibit GnRH pulsatility following progesterone administration, while the proges-
terone receptor expression is upregulated from the E (Nippoldt et al. 1989; Soules
et al. 1984). Thus, E also mediates the inhibiting effect on the GnRH secretion by
enhancing the dynorphin secretion and action.

The E negative feedback effect so far described is dependent on constant low
levels of the hormone, since it is well known that a rapid increase in estradiol levels,
such as at the end of the follicular phase in the female menstrual cycle, accompanied
by the upregulation of the PR, characteristically switches the feedback from inhib-
itory (negative feedback) to stimulatory (positive feedback). This E positive feed-
back is a key point in the determination of the GnRH preovulatory surge which
allows the LH peak and the following ovulation. The neuroendocrine mechanisms
based on such positive feedback of E are less well characterized, compared to the
negative ones, and appear to be more site- and species-specific. Experimental data in
humans and animal models indicate that at least a subgroup of kisspeptin-secreting
neurons plays a key role in mediating the E positive feedback. Indeed, in humans, the
administration of kisspeptin, instead of hCG, was effective in generating the ovula-
tory LH surge and in triggering the oocyte maturation (Jayasena et al. 2010). A more
precise characterization of this positive feedback comes from experimental data on
female rodents (Roa et al. 2009). In these animal model, estradiol is able to enhance
the Kiss1 mRNA level in the AVPV/RPV3 nucleus (Smith et al. 2005b), and this is
associated with the observation that AVPV kisspeptin neurons are stimulated during
the preovulatory sex steroid-induced LH surge (Smith et al. 2006). Further, these
kisspeptin neurons in the AVPV are connected with the GnRH neurons (Clarkson
and Herbison 2006), and the offsetting of kisspeptin in the POA eliminates the
preovulatory LH peak (Kinoshita et al. 2005). Furthermore, the KO animal models
for Kiss1 and Kiss1R genes are characterized by an anovulatory state, and specific
kisspeptin antagonists are able to markedly inhibit the gonadotropin preovulatory
surge (Pineda et al. 2010a). Altogether these data indicate a key role of the kisspeptin
neurons of the AVPV hypothalamic nucleus in mediating the positive feedback
control of the GnRH secretion in rodents. In humans, the homologous of the
AVPV kisspeptin neurons has so far not been identified (Rometo et al. 2007; Oakley
et al. 2009). Nevertheless, this sexual dimorphism, observed in the kisspeptin
pathway in the INF region, might be related to E positive feedback. Indeed, E
positive feedback occurs only in females, where the system appears more
represented and might be constituted by distinct kisspeptin neurons mediating the
negative or the positive E feedback on the GnRH secretion. As for the positive
feedback, the effect seems to be mediated by the ERα since the selective elimination
of this signaling in the kisspeptin cells in vivo is associated with a lack of the E
action on the AVPV neurons and subsequently the absence of ovulation (Mayer et al.
2010).

To summarize the data so far accumulated regarding the sexual steroid action on
the GnRH secretion, we can conclude that the negative and positive feedbacks are
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surely mediated by the kisspeptin system, although a certain direct effect through
specific receptors has to be considered and might be better characterized in the
future.

Neurotransmitters and Neuropeptide Regulation
As demonstrated either in vivo or in vitro, the GnRH secretion and pulsatility is also
modulated by local release of different neurotransmitters and neuropeptides, which
are also interrelated with other control systems such as the KNDy neurons and the
gonadal steroids.

Two of the first neurotransmitters able to stimulate the GnRH secretion are
represented by norepinephrine and dopamine (Herbison 1997). The initial evidence
came from in vitro studies of the GT1 GnRH neuron cell line that expresses
β1-adrenergic and D1-dopaminergic receptors and whose activity is pharmacologi-
cally interfered by the treatment with specific agonists and antagonists of the so far
mentioned receptors (Martinez de la Escalera et al. 1992; Findell et al. 1993; Uemura
et al. 1997). Subsequently, experimental data in humans and primates have con-
firmed the modulation of the GnRH pulsatile secretion by norepinephrine and
dopamine also in vivo. Indeed, the α-adrenergic receptor blocking agents (i.e.,
phentolamine or prazosin) and the dopamine antagonist (i.e., metoclopramide) are
able to arrest or at least inhibit the GnRH pulse generator in ovariectomized rhesus
monkey (Kaufman et al. 1985; Gearing and Terasawa 1991). Furthermore, in
humans, while the administration of dopamine and its agonists has been shown to
be able to decrease the mean LH circulating levels, the α-adrenergic receptor
blocking agents do not alter the LH pulsatile frequency (Leblanc et al. 1976;
Lachelin et al. 1977; Pehrson et al. 1983).

Glutamate represents another important excitatory neurotransmitter in the hypo-
thalamus, and its role in the stimulation of the GnRH secretion has been demon-
strated in several species (Goldsmith et al. 1994; Dhandapani and Brann 2000; Gore
2001; Ottem et al. 2002; Lin et al. 2003; Pompolo et al. 2003). Glutamate mediates
its role by binding to the N-methyl-D-aspartate (NMDA) receptors which are
expressed on GnRH neurons (Gore 2001). Additionally, since the GABA agonists
and the opioids agents are able to act at presynaptic NMDA receptor to inhibit the
glutamate exocytosis (Potashner 1979; Weisskopf et al. 1993), an interaction
between the glutamate and the opioid neurons may occur in the regulation of the
GnRH control (Brann and Mahesh 1997). Indeed, in GT1 cells, GABAA and
GABAB NMDA receptors have been identified (Stojilkovic et al. 1994).

GABA, in contrast to the previously described stimulatory neurotransmitters,
inhibits GnRH secretion through the binding of the GABAA receptor (Urbanski
and Ojeda 1987; Herbison 1998). This was demonstrated both in in vivo and in vitro
experimental models following the treatment with specific agonist and antagonist of
the GABAA receptor (Li and Pelletier 1993; Leonhardt et al. 1995; Han et al. 2004).

Among the different neuropeptides, an important inhibitory role on the GnRH
secretion is surely played by the opioids (Kalra and Kalra 1984; Grosser et al. 1993).
Indeed, in vitro experimental evidences revealed that opioids weaken the adrenergic
stimulation on GT1 cell line (Nazian et al. 1994), and this inhibitory effect can be
solved by the use of the opiate antagonist, naloxone (Ferin et al. 1982; Van Vugt
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et al. 1989; Williams et al. 1990). Moreover, the in vivo data demonstrate that the
activation of endogenous opioids mediate the suppression of the GnRH secretion
following the treatment with corticotropin-releasing hormone (CRH) (Knobil 1989;
Williams et al. 1990), although this effect was not observed in humans (Fischer et al.
1992).

Neuropeptide Y (NPY), galanin, and aspartate represent other putative
neuromodulators of the GnRH system, although only the last one stimulates directly
the GnRH pulse generator, whereas the first two are gonadal steroid dependent for
their action (Woller and Terasawa 1992; Brann et al. 1993). Indeed, studies on the
effect of NPY on the GnRH secretion reveal a complex picture. Central injection of
NPY in intact animal (or castrated animal substituted with sex steroids) leads to the
stimulation, while in castrated animal to the inhibition of the GnRH secretion. This
bimodal action of NYP on the GnRH system is then sex steroid dependent. Never-
theless, the NPY null animal models present a relatively normal reproductive func-
tion, indicating that the role played by NPY in reproduction is only one of several
inputs and it is part of a highly redundant network.

Another important peptide in regulating the GnRH secretion is leptin, a peptide
hormone secreted by the adipose tissue that helps to regulate the energy balance and
mirrors the amount of energy reserve. Thus, leptin might play a key role either by
signaling to the central nervous system the information regarding the amount of fat
stores that are present or by enabling the activation of the HPG axis through the
GnRH secretion when convenient. Specifically, it has been demonstrated that leptin
is able to stimulate the GnRH secretion either increasing the release of aspartate or
reducing the release of GABA in peri-pubertal rats, whereas in the prepubertal rats, it
increases the release of GABA (Reynoso et al. 2003). Furthermore, the exogenous
replacement therapy with leptin in leptin-deficient prepubertal girls results in a
LH/FSH secretory pattern consistent with an early puberty, thus confirming the
stimulation of the GnRH secretion (Farooqi et al. 1999).

GnIH
The neuronal network that regulates the HPG axis is additionally complicated by
gonadotropin inhibitory hormone (GnIH), a novel neuropeptide capable of inhibiting
gonadotropin synthesis and secretion, which was first identified in birds (Tsutsui
et al. 2000). GnIH is synthetized as a 173 amino acid precursor that is proteolytically
processed into three peptides, respectively, named GnIH, GnIH-1, and GnIH-2
(Satake et al. 2001). These peptides share a carboxyl-terminal LPXRF-amide struc-
ture, in which X might be replaced by L or Q. Two perfectly conserved peptides of
the RF-amide family, RFRP-1 and RFRP-3, were also reported in mammals. Intrigu-
ingly, even if RFRP-1 peptide exhibits greater structural homology with GnIH
(Kriegsfeld et al. 2006), the RFRP-3 appears as the mammalian functional ortholog
of avian GnIH (Pineda et al. 2010b; Smith and Clarke 2010). Both RFRP-1 and
RFRP-3 act primarily by binding NPFF1R (also termed Gpr147), a G-protein-
coupled receptor. Moreover the two peptides are able to signal binding the
NPFF2R receptor (also named Gpr74) (Clarke et al. 2009). In mammals RFRP-3
neurons are principally identified in the hypothalamic dorsomedial nucleus (DMN)
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or adjacent areas, where they project to different districts of the hypothalamus, such
as the ARC, the ventromedial nucleus (VMN), the lateral hypothalamus, and the
paraventricular nucleus (PVN). It is well known that these regions play crucial
functions in the regulation of fertility and energy equilibrium (Qi et al. 2009). In
this scenario, recent experimental data suggest a possible function of GnIH/RFRP
peptide as a connecting hub, together with leptin, between reproductive and meta-
bolic homeostasis. Overall the pharmacological data so far available are in favor of
an orexigenic role for RFRP-3. Considering that orexigenic mediators are turned on
in negative energy balance conditions (e.g., to promote food intake), it is reasonable
to suppose that RFRP mediates the suppression of reproductive function during an
energy absence state (Clarke et al. 2012).

Even though the link between the GnIH/RFRP and the physiology of reproduc-
tion was described in animal models (Tsutsumi et al. 2010), a possible regulation of
human pubertal development by the RFRP-3/GPR147 system was only recently
suggested (Maggi et al. 2016). While the experimental evidences collected until now
suggest a main inhibitory effect exerted by GnIH/RFRP on LH/FSH release among
mammals, several arguments persist concerning the nature (stimulatory in some
instance), preferential area of action (pituitary vs. hypothalamic), and significance
(in relation with different neuropeptides) of the GnIH/RFRP network in the control
of the hypothalamic-pituitary-gonadal axis (Fig. 5). Equally, the relationship
between the RFRP and the other mediators with crucial roles in the physiology of
reproduction, including kisspeptins (Fig. 5), was proposed, but additional evidence
is required in order to have a complete picture of the main interaction and connec-
tions between GnIH/RFRP peptides and central/peripheral actors involved in the
regulation of the hypothalamic-pituitary-gonadal axis.

Other Factors Influence on GnRH Regulation
Other factors may influence the GnRH secretion including various stressors as
infection, malnutrition, anxiety, depression, and chronic illness. Indeed, in humans
and in animal models, acute fasting is able to induce infertility throughout the
inhibition of the GnRH secretion (Bergendahl et al. 1998). Similar effect was
demonstrated in animal models treated with intravenous lipopolysaccharide, a bac-
terial endotoxin that mimics an infectious stress (Takeuchi et al. 1997; Yoo et al.
1997; Refojo et al. 1998). Finally, men affected with prolonged critical illness
present a decrease and a blunted 24 h pulsatile profile of the LH secretion, which
causes a reduced androgen circulating levels with the settle of an acquired central
hypogonadism (Van den Berghe et al. 1994).

All these chronic stressors trigger a rise in glucocorticoids, which are the classic
endocrine response to stress. GC suppresses reproductive function at different levels
of the HPG axis (Collu et al. 1984; Rabin et al. 1988) mainly through the inhibition
of the GnRH secretion (Dubey and Plant 1985; Kamel and Kubajak 1987), which, in
turn, leads to a reduced LH release (Briski and Sylvester 1991). This is consistent
with the observation that in Cushing’s disease, a disorder characterized by hyper-
cortisolemia, the presence of an associated hypogonadism is a common aspect.
Moreover, hypothalamic neurons are known to express the glucocorticoid receptor
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(GC-R) (Chandran et al. 1994), and the treatment of the GT1 cell line with GC
results in the inhibition of both the GnRH-mRNA levels and the transcriptional
activity of transfected GnRH promoter-reporter gene vectors (Chandran et al. 1996).
Additionally, the downregulation of the GnRH secretion exerted by the GC is
mediated through the interaction with the GnIH/RFPR system (Fig. 5). Indeed,
acute and chronic stress stimulates expression of RFRP in the adult male rat
hypothalamus, where expression of RFRP and GC-R overlap (Kirby et al. 2009),
and systemic administration of RFRP combined to stress suppresses the LH release
and the sexual behavior. On the other hand, adrenalectomy prevents the stress-
induced increase of the RFPR expression in the hypothalamus and in turn also the
suppression of LH secretion.

On the opposite, in response to acute stress, endogenous GC may protect gonad-
otropin secretion (Matsuwaki et al. 2006). This is related to the secretion of prosta-
glandins (PGs) in the central nervous system, which inhibit the LH pulses, as
reported in the case of several stress factors such as infections, hypoglycemia, and
restriction (Konsman et al. 2004). The increased secretion of GC may balance the
effects of stress-induced PG synthesis in order to support, instead to inhibit, the
reproductive function in response to acute stress circumstances.

Summary

Reproduction is crucial for species survival and is fully dependent on a complex axis
involving different organs such as hypothalamus, pituitary, gonads, and genitalia.
This network is controlled by neuroendocrine mechanisms which are not fully
characterized but surely interacting at the hypothalamic level where relatively few
neurons secrete the neurohormone GnRH. In the last decades, advances have been
made to better understand the action of GnRH either in physiologic or pathologic
conditions. Researchers are progressively starting to better understand which factors
are mandatory for GnRH neuronal migration, the mechanisms involved in the
starting of the pulsatile GnRH secretion at puberty, and the maintenance of the
normal adult reproductive function.
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