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Preface

Since we have published our discovery of the dedifferentiation of epithelial cells in
The Lancet in 2001 [Xiaobing Fu et al. Dedifferentiation of epidermal cells to stem
cells in vivo. Lancet 2001; 358: 1067-1068], this phenomenon aroused a great deal
of our interest. As researchers of trauma and regenerative medicine, we realized cel-
lular dedifferentiation has been deeply investigated by generations of scientists
ranging from botany to zoology, which further kindled our interest in unveiling the
relation between dedifferentiation and regeneration.

Through our intensive investigation and discovery, dedifferentiation is found to
be an irreplaceable process in biological development and regeneration. The evi-
dence is witnessed by scientists in numerous fields, such as plant, invertebrate,
amphibian, and mammal. Scientometric and bibliometric analyses have demon-
strated that cellular dedifferentiation attracts researchers all over the world, with
accent on those in the USA and Western Europe. Several universities and organiza-
tions were quite productive in academic achievements on this issue, such as
University College London; the University of California, Irvine; the University of
Michigan; etc. Prolific scientists, for example, Prof. David M. Gardiner, Prof.
Panagiotis A. Tsonis, Prof. Satoh Akira, etc., have represented their works on many
publications.

Our group has made remarkable achievements on skin repair and sweat gland
regeneration via the process of dedifferentiation. These achievements of sweat
gland in vivo and in vitro regeneration appeared in the international field of regen-
erative medicine for the first time and have earned worldwide commendation as a
milestone research. Besides, regeneration of other tissues by dedifferentiation has
also obtained exceptional results. For example, Jopling Chris et al. discovered
zebrafish heart regeneration by cardiomyocyte dedifferentiation [Jopling Chris et al.
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and prolif-
eration. Nature. 2010 Mar 25; 464(7288); 606—609], and Odelberg SJ et al. induced
mammalian myotube dedifferentiation by Msx1 [Odelberg SJ, et al. Cell. 2000 Dec
22;103(7):1099-1109].

In the light of these, I planned to sketch out the spectrum of cellular dedifferen-
tiation to scientists, researchers, and physicians in 2015. We mapped out the theories,
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concepts, discoveries, achievements, practices, and perspectives of this issue in the
form of a monograph. First, I would like to acknowledge two of my PhD students,
Andong Zhao and Tian Hu, who have accomplished significant work in data collec-
tion and compiling. I am also grateful for all the authors who have contributed their
articles and reviews in the appendixes. Additionally, I would like to express my
great gratitude toward all the scientists and researchers, for their permission, whose
figures and tables in their publications were cited in this book. Although we have
tried our best to get contact with them and ask for permission, there is still imperfec-
tion. Finally, I am also grateful for the research foundation support from the National
Key Research Projects offered by Ministry of Science and Technology, China, and
the publication aid and support by the press of Springer. The accomplishment of this
monograph could never be carried out without the effects of all the people and units
I appreciated.

Owing to the busy schedule and limits in knowledge, the book might be incom-
prehensive with flaws and limitations. We hope readers could point these out and
would feel free to contact us, in order to make more contribution to the field of
dedifferentiation in the future.

Beijing, China Xiaobing Fu
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Chapter 1
Central Nervous System and Dedifferentiation

Abstract Central nervous system serves as the leading organ controlling, manipulat-
ing, and involving into almost every aspects of human body’s functions. Researches
and neuroscientists have been trying to find out varieties of approaches to repair and
restore the damaged or degenerated central nervous system. It is generally believed that
there are hundreds of billions of neurons in our brain, and the quantity would not change
after birth. The olfactory bulb and hippocampus are the only two regions that could
undergo self-renewal during our lifetime. Neural stem cells could differentiate into
neuronal restricted progenitors and glial restricted progenitors. Glial restricted progeni-
tors could produce type I astrocytes, type II astrocytes, and oligodendrocytes. But the
regenerative capacity of these stem cells is far insufficient. Dedifferentiation of certain
types of cells that resided in the central nervous system has provided the opportunity for
neural regeneration, since other approaches, such as transplantation or drugs, could
hardly take effects. Specifically, astrocyte dedifferentiation was observed successfully
both in vivo and vitro. Injury triggers the dedifferentiation in vivo, while astrocytes
could be reprogrammed to dedifferentiated types in vitro. This review summarized the
current understandings and researches on central nervous regeneration, astrocyte dif-
ferentiation, and direct reprogramming of astrocytes. In order to achieve the goal of
CNS regeneration, clarifying the molecular mechanisms of regulating dedifferentiation
and redifferentiation in situ would lay the solid foundation for further researches.

Keywords Central nervous system ¢ Neural stem cell  Astrocytes
Dedifferentiation ® Regeneration ¢ Brain injury * Spinal cord injury

1 Central Nervous Stem Regeneration, Stem Cell,
and Dedifferentiation

1.1 Central Nervous System Injury and Regeneration

Central nervous system (CNS) comprises of the brain and spinal cord. Injuries and
diseases of CNS, such as Parkinson’s disease, multiple sclerosis, stroke, traumatic
brain injury, and spinal cord injury (SCI), result in various functional deficits and

© Springer-Verlag GmbH Germany 2018 1
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2 1 Central Nervous System and Dedifferentiation

abnormalities. At the cellular level, all of them lead to apoptotic and necrotic death
of neurons. Therefore, replacing the lost neurons with new neurons is essential for
CNS repair and regeneration. Unlike non-mammals that exhibit tremendous capac-
ity to regenerate neurons from damaged CNS [1, 2], mammals have limited capacity
to spontaneously regenerate the lost neurons. Mammalian CNS was considered as a
tissue where new neurons could not be generated once development finished.
However, this dogma has been challenged by studies showing that newborn neurons
can be generated throughout life in a process called “adult neurogenesis.”

1.1.1 Neural Stem Cells

Grown neurogenesis is the process of putting out novel neurons integrating into the
existent circuits after early postnatal and fetal development. In mammalian brain,
this action predominantly occurs in two portions of the forebrain, subventricular
zone (SVZ) of lateral ventricles in telencephalon and subgranular zone (SGZ) of the
dentate gyrus in the hippocampus [3]. As neural stem cells (NSCs) dwell in both
zones, SGZ and SVZ are called neurogenic area. NSCs are cells of self-renewing
multipotent in the adult and developing mammalian CNS. Throughout develop-
ment, assorted specified precursors dividing a restricted number of times are pro-
duced by NSCs before they differentiate into glial cells or neurons terminally, such
as oligodendrocytes and astrocytes. In adult mammalian CNS, resident NSCs in
SVZ and SGZ maintain neurogenesis throughout adult life: adult NSCs bring about
neuroblasts further differentiating into matured neurons integrating into local cir-
cuitry within the olfactory bulbs or dentate gyrus. Unlike developing NSCs, fully
grown NSCs originate from radial glia or so-called radial glial cells converting into
astrocytic-like NSCs in the postnatal brain. Radial glia stem from neuroepithelial
cells at the early stage of neurogenesis and are the principal cell type in the under-
developed brain, where they both serve as scaffolds and neural progenitors for new-
born neurons migration. Thus, NSCs in the SVZ share many characteristics with
astrocytes. The finding of NSCs and neurogenesis in the grown mammalian CNS
modifies our apprehension of the plasticity and role of brain and stimulates passion
for harnessing their regenerative possibility in novel treatments for disorders like
depression, stroke, SCI, and Parkinson’s disease. Native NSCs’ therapeutic potenti-
ality is unfortunately limited by the confinement of sturdy neurogenesis to SVZ and
the grown SGZ. Furthermore, novel neurons could be generated by adult NSCs only
under normal physiological circumstances in SGZ region and SVZ. For example,
while NSCs that are separated from SGZ or SVZ are transplanted into the adult
brain’s ectopic areas, they differentiate into astrocytes and oligodendrocytes mostly
[4]. It may be owing to adult NSCs that share some features of glial lineage or neu-
rogenic local microenvironment that is favorable to neuronal differentiation of
NSCs. This is further supported by NSCs from SGZ region of the dentate gyrus that
can differentiate into olfactory bulb neurons when grafted to SVZ and NSCs iso-
lated from a non-neurogenic region, such as the spinal cord, that can differentiate
into neurons when transplanted into dentate gyrus [3]. Therefore, the fact that the
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origin of adult NSCs and its neuronal differentiation are both restricted to the neu-
rogenic niches in vivo largely limits the application of NSCs in various CNS dis-
eases and injuries (Fig. 1.1).

1.1.2 Radial Glia

Radial glia, derived from neuroepithelium, is a ubiquitous glial cell type during the
development of all vertebrate brains; they act as stem and progenitor cells that give
rise to all neurons of mammalian CNS. However, radial glia represent more fate-
restricted progenitors than NSCs, because radial glia are inclined to the generation of
a single cell type, either astrocytes, oligodendrocytes, or neurons, rather than all of
them like NSCs [5]. Stem cell properties not only are interestingly possessed by radial
glia, astroglial properties are also exhibited. They express stem cell markers like the
intermediate filament protein nestin and keep significant qualities of apical-basal
polarity. They also have an ultrastructural distinctive of astroglial glycogen granules
and express assorted molecules that are typical of astrocytes, such as astrocyte-specific
glutamate transporter (GLAST), Ca®*-binding protein S100p, glial fibrillary acidic
protein (GFAP), vimentin, and brain lipid-binding protein (BLBP). More fate
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