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Foreword

Ten quadrennial editions and counting! This latest edition 
of Brenner and Rector’s The Kidney, which comes 40 years 
after the first, is also the first in which I have had no formal 
role. The work of editing is now in the very capable hands 
of five exceptionally gifted and internationally dispersed 
former colleagues. It is perhaps fitting then to leave behind 
something of the history of how this textbook came  
into being. The year was 1972, the setting the Veterans 
Administration Medical Center at Fort Miley, perched on a 
high bluff overlooking the Golden Gate Bridge at the 
entrance to San Francisco Bay. I was then in my third year 
beyond renal physiology fellowship training, holding the 
position as Chief, Nephrology Section, overseeing a faculty 
of four and a single laboratory devoted to basic kidney 
research. Exploiting surface glomeruli in a unique strain of 
Wistar rats, using specially designed micropuncture tech-
niques, our now classical studies of glomerular hemodynam-
ics and permselectivity propelled me up the academic 
ladder such that a full professorship in the University of 
California system was soon earned. I was so self-confident 
and ambitious that new challenges and adventures were 
eagerly sought and considered.

But the one that presented itself on a Saturday morning 
in late 1972 could hardly have been imagined. After review-
ing the week’s laboratory data with my research team, I 
wandered, as I often did, into the nearby office of the Chair 
of Medicine, Marvin H. Sleisenger, whose warm and sup-
portive words were always a treasured source of guidance 
and encouragement. On this particular morning’s visit, I 
saw on his desk before him reams of long vertical galley 
proof of what was soon to become the first edition of a new 
textbook on gastroenterology, co-edited with John Fordtran. 
How wonderful it must feel, I remarked, to be in the posi-
tion to oversee the organization and synthesis of a major 
field of internal medicine. He indeed expressed great pride 
and satisfaction in dealing with this challenge and, to my 
complete amazement, gazed up at me and suggested that 
this might be the appropriate time in my career to under-
take a similar responsibility for a large-scale academic work 
in nephrology.

Flattered, of course, I left his office with little belief that 
I had the knowledge or capability to take on so formidable 
a challenge at this relatively early stage in my career. Not 
more than a week later, however, Albert Meier, Senior Editor 
at W.B. Saunders Publishing Company, was in my office 
urging me to set aside my reservations and undertake the 
responsibility for putting together a comprehensive com-
pendium of nephrology, from basic science to clinical diag-
nosis and treatment of kidney disease. Weeks passed without 
decision into early 1973, when I learned that Floyd C. 
Rector, Jr., a world-renowned academic nephrologist, was 
moving to San Francisco to direct the Renal Division at the 

University of California, San Francisco. Imagine my excite-
ment at the prospect of collaborating with this brilliant 
physician-scientist on a project of this magnitude and impor-
tance. Upon my sharing the notion with him, Dr. Rector was 
quick to agree that a two-volume textbook of nephrology 
based on fundamental physiologic principles was indeed 
needed, and we soon informed Saunders that a detailed 
outline of the scope and organization that reflected our 
combined personal insights and imagination would soon be 
forthcoming. All this was achieved in an informal 4-hour 
session in the living room of my Mill Valley home, where, 
over a lovely bottle of Napa Valley cabernet sauvignon and 
delicious, warm canapés prepared by my wife, Jane, we 
sketched out the five-section structure of a book that would 
remain unaltered over seven editions, namely, “Elements of 
Normal Renal Function,” “Disturbances in Control of Body 
Fluid Volume and Composition,” “Pathogenesis of Renal 
Disease,” “Pathophysiology of Renal Disease,” and “Manage-
ment of the Patient with Renal Failure.” Over the next few 
weeks, we added the filigree of specific chapter titles, pro-
spective authors, timelines, and our shared editorial respon-
sibilities and submitted the operational plan to Saunders for 
their executive consideration. Enthusiastic approval and 
contracts soon followed, and we were then busy with formal 
letters of invitation to authors (no e-mail in those days) for 
49 chapters in nearly 2000 printed pages, with not a single 
turndown.

The first edition of The Kidney debuted at the ninth 
annual meeting of the American Society of Nephrology in 
November 1975, bearing the publication date of 1976. 
Acceptance was instantaneous and robust. Three subse-
quent editions with Dr. Rector appeared in 1980, 1984, and 
1988, each extensively revised and expanded to reflect the 
remarkable progress in the field. I then served as sole editor 
for four editions, including an extensive structural redesign 
for the eighth edition, which consisted of 70 chapters in 12 
sections. Among the newly crafted sections were the timely 
themes of “Epidemiology and Risk Factors in Kidney 
Disease,” “Genetic Basis of Kidney Disease,” and “Frontiers 
in Nephrology.” The eighth edition also displayed cover art, 
tables, and figures redrawn in house in multicolor format 
and a fully functional electronic edition. In the preface to 
this eighth edition, which appeared in 2008, I wrote, “Just 
as blazing embers eventually grow dimmer, I recognize that 
now is the appropriate time to begin the orderly transition 
of responsibility for future editions…to a new generation of 
editors.” An international team consisting of Glenn M. 
Chertow, Philip A. Marsden, Karl L. Skorecki, Maarten W. 
Taal, and Alan S. L. Yu joined me in crafting the ninth 
edition, to which two major new sections were added, “Pedi-
atric Nephrology” and “Global Considerations in Kidney 
Disease.” And for this tenth edition, which you are now 
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reading, these five editors have operated fully indepen-
dently in producing this extensively updated and further 
expanded latest edition, featuring several novel new chap-
ters, by far the best ever!

In addition to the refinements mentioned, what has come 
to be known as the “Brenner and Rector” project has grown 
into a very well received library of nephrology, consisting of 
discrete companion volumes designed to delve more deeply 
into specific areas of readership interest, including Therapy 
in Nephrology and Hypertension; Chronic Kidney Disease, Dialysis, 
and Transplantation; Hypertension; Acute Renal Failure; Acid-
Base and Electrolyte Disorders; Diagnostic Atlas of Renal Pathology; 
Molecular and Genetic Basis of Renal Disease; and Pocket Com-
panion to Brenner and Rector’s The Kidney.

Nephrology has evolved dramatically over these past 40 
years and will surely continue at an ever-quickening pace in 
the future. This will necessitate a full thrust into multimedia 
electronic formats such that updating new developments 
will appear more and more as a continuum. This will surely 

require new tools and editorial flexibility not yet tested. But 
therein may lie the project’s greatest challenge.

Looking back, I could hardly have imagined the enor-
mous success and respect this textbook project has enjoyed. 
Of course, full credit rests entirely with the authors of the 
chapters in each edition, whose enormous commitments of 
time and effort provided the outstanding scholarship and 
synthesis their respective areas demanded, along with invalu-
able comprehensive bibliographies, all of which served our 
devoted readership so well. My gratitude to them, our edito-
rial staff, and the readers for their generous feedback over 
the years is unbounded. Playing a part in documenting the 
ever-more complex and expanding disciplines of renal 
science and medicine is among my life’s greatest pleasures 
and challenges. If only I could again be a young student and 
have this magnificent new edition introduce me to the kid-
ney’s many wonders and enigmas.

Barry M. Brenner, MD
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Preface

The tenth edition of The Kidney represents a turning point 
in the more than 40-year history of what has rightfully 
become a classic in nephrology. Barry Morton Brenner, co–
founding editor with his distinguished colleague, Floyd 
Rector, and sole editor for the fourth through eighth edi-
tions, has shepherded an orderly transition of editorial stew-
ardship to five of his fortunate trainees. We served as 
co-editors with Dr. Brenner on the ninth edition, for which 
Maarten W. Taal was a lead editor, and have now been fully 
entrusted with this precious legacy, buoyed by the mentor-
ship and training that we have each received from Dr. 
Brenner.

The same sense of honor, mixed with trepidation, respon-
sibility, and pride, that accompanied each of us as we entered 
the vaunted nephrology clinical and research program in 
Dr. Brenner’s division at Brigham and Women’s Hospital 
now accompanies us as we accept into our hands this “labor 
of love.” Although this is the first edition for which Dr. 
Brenner is not an editor, his presence is palpable through-
out the book. A fascinating history of The Kidney is described 
in the foreword by Dr. Brenner, and the narrative very much 
follows the exciting history of scientific discovery and clini-
cal advances in the rather young clinical specialty of nephrol-
ogy and our emerging knowledge of kidney biology. Dr. 
Brenner’s imprint is also evident in so many of his own 
scientific discoveries and insights that have transformed our 
understanding of all aspects of the kidney in health and 
disease, as described by the authors throughout all the sec-
tions of the book. The Kidney continues to combine authori-
tative coverage of the most important topics of relevance to 
readers worldwide with the excitement of “a work in prog-
ress” presenting novel and transformative insights based on 
basic and clinical research and clinical paradigms that 
inform and improve medical care to patients with kidney 
disease in every corner of the world.

The more than 200 authors with whom we have had the 
great privilege of working have succeeded in transmitting 
not only a wealth of information, but also a sense of passion 
for the topics at hand. We hope that the reader will readily 
identify for each author the specific attraction that draws 
the author closer to the subject. These are myriad and 
diverse, ranging from the sheer and exquisite beauty of the 
architecture, structure, and substructure of the renal system, 
to the intricacies of cellular and molecular function, along-
side advances in our understanding of disease pathogenesis 
at the most fundamental level, coupled with the opportunity 
to offer lifesaving clinical management with a global health 
perspective. Indeed, the authors reflect an international 
fellowship of dedicated researchers, scientists, and health 
professionals who find their expression in narrative text, 
images, illustrations, Web links, review questions, and refer-
ences that constitute this tenth edition of The Kidney.

Most of all, the book is imbued with the inspiration of Dr. 
Brenner. We feel that it is this ingredient that guarantees 
the continued success of The Kidney in an era when other 
textbooks in all specialties are supplanted by a morass of 
other information sources. We, the editors and publishers, 
together with our authors, believe in the cardinal impor-
tance of a coherent and updated source of empowering 
information for students and devotees of the kidney, whether 
in the professional, teaching, or research domain.

To this end, the ninth edition of The Kidney, with Maarten 
W. Taal as lead editor, introduced several major changes  
that have proven enormously successful. Therefore we  
have retained and extended these innovations in the tenth 
edition. As befitting a living textbook, all chapters have been 
extensively updated or entirely rewritten. All of the authors 
are authorities in their respective fields, and many have 
accompanied The Kidney for several editions. However, new 
authors have been invited to provide refreshing perspectives 
on existing topics or to introduce brand-new areas relevant 
to kidney biology and health. One of the many examples is 
thorough consideration of our completely transformed 
understanding of sodium balance, resulting from the discov-
ery of sodium stores whose very existence had been unknown 
and whose fluxes are under complex hormonal and growth 
factor regulation. By combining the classical and authorita-
tive with transformative discovery and perspectives, The 
Kidney has positioned itself as the “go-to” reference and also 
the leading learning resource for kidney health and disease 
throughout the world. For example, a section on pediatric 
kidney disease was included in the ninth edition, and the 
positive feedback we received resulted in greater emphasis 
in the tenth edition. The extension of The Kidney into pedi-
atric kidney disease will allow individuals and institutions 
throughout the world, sometimes with limited resources, to 
access information from a learning resource that covers 
kidney health and disease from pre-conception, through 
fetal and infant health, childhood, adulthood, and into old 
age. Similarly, the section on global perspectives has been 
expanded, and the chapter on ethical challenges has been 
deepened.

A number of practical considerations were also taken into 
account in the production of the tenth edition. Positive 
feedback and reviews have reinforced the overall organiza-
tion into 14 sections and 87 chapters that take the reader 
from normal structure and function through to current and 
future challenges in the concluding section.

The authors have been asked to choose 50 key references 
for their respective chapters, whose citations will appear  
in the print edition. The online edition will in turn offer 
access to the full repertoire of references for each chapter, 
allowing scholarly primary assessment of each subject. As a 
new resource, we have included a set of board review–style 
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Senior Project Manager. These are but a few of the many 
members of the highly professional team at Elsevier, from 
whose wealth of experience the editors have benefited 
greatly.

None of this is possible without our authors, whose impri-
matur, loyalty, and commitment to the highest standards 
continue to place The Kidney in its well-deserved position 
of international recognition. Through interactions with 
authors, we have also been able to strengthen long-standing 
bonds and to cultivate friendships. Most importantly, we owe 
a debt of gratitude to our readers, whose loyalty to and 
enthusiastic participation in each new edition energizes us 
as editors and reinforces our belief that the guiding spirit 
of Brenner and Rector for the subject matter and respect 
for the tradition initiated by the veritable “father” of The 
Kidney—Barry Morton Brenner—will continue to enliven 
this labor of love through many future editions.

On behalf of my co-editors, Maarten Taal, Glenn Chertow, 
Alan Yu, and Philip Marsden, I express tremendous gratifi-
cation with the work that has become a major part of our 
lives and those of our families and friends and hope that 
the reader will also share this gratification upon partaking 
of The Kidney.

Karl Skorecki
Haifa, Israel

questions for those using The Kidney in preparation for cer-
tification and other examination purposes. As an educa-
tional resource, readers will be able to download figures for 
PowerPoint teaching purposes. We have also made an effort 
to adopt uniform terminology and nomenclature, in line 
with emerging consensus in the world kidney community. 
Thus, wherever possible, we have preferred terms such as 
chronic kidney disease and acute kidney injury, replacing the 
diverse and sometimes confusing terms that have peppered 
the literature in the past. Through Expert Consult, individu-
als who wish access to a physiology or disease topic at the 
most authoritative level will also be able to acquire separate 
chapters of interest, as might be the case for scientists and 
professionals outside of nephrology. Thus, through acquisi-
tion of The Kidney, individuals or institutions acquire a com-
panion to accompany them on their journey in study, 
research, or patient care related to kidney health and 
disease.

Production of The Kidney is very much a team effort. The 
editors are indebted to the publication production team. 
Joan Ryan has served as our guide and lamppost beaconing 
the numerous contributors and providing expert input and 
support as Senior Content Development Specialist now for 
the ninth and tenth editions. Kate Dimock, Helene Caprari, 
and now Dolores Meloni have successfully assumed succes-
sive positions as Content Strategists, and Mary Pohlman as 
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Over the past several decades, the identification of genes 
and molecular pathways required for normal kidney devel-
opment has provided insight into our understanding of 
obvious developmental diseases such as renal agenesis and 
renal dysplasia. However, many of the genes identified have 
also been shown to play roles in adult-onset and acquired 
kidney diseases such as focal segmental glomerulosclerosis. 
The number of nephrons present in the kidney at birth, 
which is determined during fetal life, predicts the risk of 
kidney disease and hypertension later in life; a lower number 
is associated with greater risk.1-3 Discovery of novel therapeu-
tic targets and strategies to slow and reverse kidney diseases 
requires an understanding of the molecular mechanisms 
that underlie kidney development.

MAMMALIAN KIDNEY  
DEVELOPMENT: EMBRYOLOGY

DEVELOPMENT OF THE UROGENITAL SYSTEM

The vertebrate kidney derives from the intermediate meso-
derm of the urogenital ridge, a structure found along the 

posterior wall of the abdomen in the developing fetus.4 It 
develops in three successive stages known as the pronephros, 
the mesonephros, and the metanephros (Figure 1.1), although 
only the metanephros gives rise to the definitive adult 
kidney. However, earlier stages are required for develop-
ment of other organs, such as the adrenal gland and gonad, 
that also develop within the urogenital ridge. Furthermore, 
many of the signaling pathways and genes that play impor-
tant roles in the metanephric kidney appear to play parallel 
roles during earlier stages of renal development, in the 
pronephros and mesonephros. The pronephros consists of 
pronephric tubules and the pronephric duct (also known 
as the precursor to the wolffian duct) and develops from 
the rostralmost region of the urogenital ridge at 22 days of 
gestation (humans) and 8 days post coitum (dpc; mouse). 
It functions in the larval stages of amphibians and fish, but 
not in mammals. The mesonephros develops caudal to the 
pronephric tubules in the midsection of the urogenital 
ridge. The mesonephros becomes the functional excretory 
apparatus in lower vertebrates and may perform a filtering 
function during embryonic life in mammals. However, it 
largely degenerates before birth. Prior to its degeneration, 
endothelial, peritubular myoid, and steroidogenic cells 
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from the mesonephros migrate into the adjacent adrenogo-
nadal primordia, which ultimately form the adrenal gland 
and gonads.5 Abnormal mesonephric migration leads to 
gonadal dysgenesis, a fact that underscores the intricate 
association between these organ systems during develop-
ment and explains the common association of gonadal and 
renal defects in congenital syndromes.6,7 In males, produc-
tion of testosterone also induces the formation of seminal 
vesicles, tubules of the epididymis, and portions of the vas 
deferens from the wolffian duct.

DEVELOPMENT OF THE METANEPHROS

The metanephros, the third and final stage, gives rise to  
the definitive adult kidney of higher vertebrates; it results 
from a series of reciprocal inductive interactions that  
occur between the metanephric mesenchyme (MM) and 
the epithelial ureteric bud (UB) at the caudal end of the 
urogenital ridge. The UB is first visible as an outgrowth at 
the distal end of the wolffian duct at approximately 5 weeks 
of gestation in humans or 10.5 dpc in mice. The MM 
becomes histologically distinct from the surrounding mes-
enchyme and is found adjacent to the UB. Upon invasion 
of the MM by the UB, signals from the MM cause the UB 
to branch into a T-tubule (at around 11.5 dpc in mice) and 
then to undergo iterative dichotomous branching, giving 
rise to the urinary collecting duct system (Figure 1.2). 
Simultaneously, the UB sends reciprocal signals to the MM, 
which is induced to condense along the surface of the bud. 
Following condensation, a subset of MM cells aggregates 
adjacent and inferior to the tips of the branching UB. These 
collections of cells, known as pretubular aggregates, undergo 
mesenchymal-to-epithelial conversion to become the renal 
vesicle (Figure 1.3).

Figure 1.1  Three stages of mammalian kidney development. The 
pronephros (P) and mesonephros (M) develop in a rostral-to-caudal 
direction and the tubules are aligned adjacent to the wolffian or 
nephric duct (WD). The metanephros develops from an outgrowth of 
the distal end of the wolffian duct known as the ureteric bud epithe-
lium (UB) and a cluster of cells known as the metanephric mesen-
chyme (MM). Cells migrate from the mesonephros (M) into the 
developing gonad (G), which develop in close association with  
each another. (Adapted from Saxen L: Organogenesis of the kidney, 
Cambridge, 1987, Cambridge University Press.)
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Figure 1.2  Organ culture of rat metanephroi dissected at T-tubule stage. Within 84 hours, dichotomous branching of the ureteric bud (UB) 
has occurred to provide the basic architecture of the kidney. Bottom panel is stained with Dolichos biflorus agglutinin—a lectin that binds 
specifically to UB cells. (Adapted from Saxen L: Organogenesis of the kidney, Cambridge, 1987, Cambridge University Press.)
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capsule, a structure that surrounds the urinary space and is 
continuous with the proximal tubular epithelium. Concur-
rently, endothelial cells migrate into the vascular cleft. 
Together with podocytes, the endothelial cells produce the 
glomerular basement membrane (GBM), a major compo-
nent of the mature filtration barrier. Initially the podocytes 
are connected by intercellular tight junctions at their apical 
surfaces.10 As glomerulogenesis proceeds, the podocytes 
revert to a mesenchymal-type phenotype, flatten, and spread 
out to cover the greater surface area of the growing glo-
merular capillary bed. They develop microtubule-based 
primary processes and actin-based secondary foot processes. 
During this time, the intercellular junctions become 
restricted to the basal aspect of each podocyte and eventu-
ally are replaced by a modified adherens junction–like struc-
ture known as the slit diaphragm (SD).10 At the same time, 
foot processes from adjacent podocytes become highly 
interdigitated. The SDs are signaling hubs serving as the 
final layer of the glomerular filtration barrier.11 Mesangial 
cell ingrowth follows the migration of endothelial cells and 
is required for development and patterning of the capillary 
loops that are found in normal glomeruli. The endothelial 
cells also flatten considerably, and capillary lumens are 

DEVELOPMENT OF THE NEPHRON

The renal vesicle undergoes patterned segmentation and 
proceeds through a series of morphologic changes to form 
the glomerulus and components of the nephrogenic tubules 
from the proximal convoluted tubule, the loop of Henle, 
and the distal tubule. The renal vesicles undergo differentia-
tion, passing through morphologically distinct stages start-
ing from the comma-shaped body and proceeding to the 
S-shaped body, capillary loop, and mature stage, each step 
involving precise proximal-to-distal patterning and struc-
tural transformations (see Figure 1.3). Remarkably, this 
process is repeated 600,000 to 1 million times in each devel-
oping human kidney as new nephrons are sequentially born 
at the tips of the UB throughout fetal life.

The glomerulus develops from the most proximal end of 
the renal vesicle that is farthest from the UB tip.8,9 Distinct 
cell types of the glomerulus can first be identified in the 
S-shaped body stage, in which presumptive podocytes appear 
as a columnar epithelial cell layer. A vascular cleft develops 
and separates the presumptive podocyte layer from more 
distal cells that will form the proximal tubule. Parietal epi-
thelial cells differentiate and flatten to form Bowman’s 

Figure 1.3  Overview of kidney development. A, Gross kidney histoarchitecture. NZ, nephrogenic zone. B through E, As described in the 
text, reciprocal interaction between the ureteric bud (UB) and metanephric mesenchyme results in a series of well-defined morphologic stages 
leading to formation of the nephron, including to the branching of the UB epithelium and the epithelialization of the metanephric mesenchyme 
into a highly patterned nephron. F, Distinctive segmentation of the S-shaped body defines the patterning of the nephron. BC, Bowman’s 
capsule; CD, collecting duct; CM, cap mesenchyme; CSB, comma-shaped body; CT, connecting tubule; DT, distal tubule; EC, endothelial 
cells; LH, loop of Henle; PA, pretubular aggregate; PT, proximal tubule; SSB, S-shaped body. 
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formed owing to apoptosis of a subset of endothelial cells.12 
At the capillary loop stage, glomerular endothelial cells 
develop fenestrae, which are semipermeable transcellular 
pores common in capillary beds exposed to high hemody-
namic flux. Positioning of the foot processes on the GBM 
and spreading of podocyte cell bodies are still incompletely 
understood but share many features of synapse formation 
and neuronal migration.13-15

In the mature stage, glomerulus, the podocytes, fenes-
trated endothelial cells, and intervening GBM compose the 
filtration barrier that separates the urinary from the blood 
space. Together, these components provide a size- and 
charge-selective barrier that permits free passage of small 
solutes and water but prevents the loss of larger molecules 
such as proteins. The mesangial cells are found between the 
capillary loops (approximately three per loop); they are 
required to provide ongoing structural support to the capil-
laries and possess smooth muscle cell–like characteristics 
that give them the capacity to contract, which may account 
for the dynamic properties of the glomerulus. The tubular 
portion of the nephron becomes segmented in a proximal-
to-distal order, into the proximal convoluted tubule, the 
descending and ascending loops of Henle, and the distal 
convoluted tubule. The distal tubule is contiguous with the 
collecting duct, a derivative of the UB. Imaging and fate 
mapping analysis reveal that this interconnection results 
from the invasion of the UB by cells from the distal segments 
of nascent nephrons (around the S-shaped body stage).16

Although all segments of the nephron are present at birth 
and filtration occurs prior to birth, maturation of the tubule 
continues in the postnatal period. Increased expression 
levels of transporters, switch in transporter isoforms, altera-
tions in paracellular transport mechanisms, and the devel-
opment of permeability and biophysical properties of 
tubular membranes have all been observed to occur postna-
tally.17 Although additional studies are needed, these 
observations emphasize the importance of considering 
developmental stage of the nephron in interpretation of 
renal transport and may explain the age of onset of symp-
toms in inherited transport disorders; some of these issues 
may be recapitulated in acute kidney injury.

THE NEPHROGENIC ZONE

After the first few rounds of branching of the UB and the 
concomitant induction of nephrons from the MM, the 
kidney subdivides into an outer cortical region, where neph-
rons are being induced, and an inner medullary region, 
where the collecting system will form. As growth continues, 
successive groups of nephrons are induced at the peripheral 
regions of the kidney known as the nephrogenic zone (Figure 
1.4). Thus, within the developing kidney, the most mature 
nephrons are found in the innermost layers of the cortex, 
and the most immature nephrons in the most peripheral 
regions. At the extreme peripheral lining, under the renal 
capsule, a process that seems to recapitulate the induction 
of the original nephrons can be observed, whereby numer-
ous UB-like structures are inducing areas of condensed mes-
enchyme. Indeed, whether there are significant molecular 
differences between the induction of the original nephrons 
and these subsequent inductive events is not known. A sub-
population of self-renewing mesenchymal cells immediately 

Figure 1.4  The nephrogenic zone. As described in the text, neph-
rons are continually produced in the nephrogenic zone throughout 
fetal life. CM, Condensing mesenchyme; PTA, pretubular aggregate; 
S, stromal cell lineage (spindle-shaped cells); UB, ureteric bud. 
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adjacent and inferior to the UB tips at the nephrogenic 
zone undergoes epithelial transformation, giving rise to new 
nephrons postnatally.18,19

BRANCHING MORPHOGENESIS: DEVELOPMENT 
OF THE COLLECTING SYSTEM

The collecting system is composed of hundreds of tubules 
through which the filtrate produced by the nephrons is 
conducted out of the kidney and to the ureter and then the 
bladder. Water and salt resorption and excretion, ammonia 
transport, and H+ secretion required for acid-base homeo-
stasis also occur in the collecting ducts, under different 
regulatory mechanisms and using different transporters and 
channels from those that are active along tubular portions 
of the nephron. The collecting ducts are all derived from 
the original UB (Figure 1.5). Whereas each nephron is an 
individual unit separately induced and originating from a 
distinct pretubular aggregate, the collecting ducts are the 
product of branching morphogenesis from the UB. Consid-
erable remodeling is involved in forming collecting ducts 
from branches of UB, and how this occurs remains incom-
pletely understood.20 The branching is highly patterned; the 
first several rounds are somewhat symmetric, additional 
rounds of branching are asymmetric, in which a main trunk 
of the collecting duct continues to extend toward the neph-
rogenic zone but smaller buds branch as they induce new 
nephrons within the nephrogenic zone. Originally, the UB 
derivatives are branching within a surrounding mesen-
chyme. Ultimately, they form a funnel-shaped structure in 
which cone-shaped groupings of ducts or papillae sit within 
a funnel or calyx that drains into the ureter. The mouse 
kidney has a single papilla and calyx, but a human kidney 
has 8 to 10 papillae, each of which drains into a minor calyx, 
with several minor calyces draining into a smaller number 
of major calyces.

RENAL STROMA AND  
INTERSTITIAL POPULATIONS

For decades in classic embryologic studies of kidney devel-
opment, emphasis was placed on the reciprocal inductive 
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Figure 1.5  Collecting duct system. The branching ureteric epithe-
lial lineage gives rise to the collecting duct system. A, E12.5 mouse 
embryonic kidney explant grown in vitro for 2 days and B, neonatal 
mouse kidney section, stained for the ureteric epithelium and collect-
ing ducts (pan-cytokeratin, red) and the nascent proximal tubules 
(Lotus lectin, green). C, Scanning electron micrograph of a hemi-
sected adult mouse kidney showing the funnel-shaped renal papillae. 
D, Scanning electron micrograph of a collecting duct showing smooth 
principal cells and reticulated intercalated cells. 
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signals between MM and UB. However, in later years, inter-
est has arisen in the stromal cell as a key regulator of 
nephrogenesis.9,21-23 Stromal cells also derive from the MM 
but are not induced to condense by the UB. Two distinct 
populations of stromal cells have been described: Cortical 
stromal cells exist as a thin layer beneath the renal capsule 
and medullary stromal cells populate the interstitial space 
between the collecting ducts and tubules (Figure 1.6). Corti-
cal stromal cells also surround the condensates and provide 
signals required for UB branching and patterning of the 
developing kidney. Disruption or loss of these stromal cells 
leads to failure of UB branching, a reduction in nephron 
number, and disrupted patterning of nephric units with 
failure of cortical-medullary boundary formation. A recipro-
cal signaling loop from the UB exists to properly pattern 
stromal cell populations. Loss of these UB-derived signals 
leads to a buildup of stromal cells beneath the capsule that 
is several layers thick. As nephrogenesis proceeds, stromal 
cells differentiate into peritubular interstitial cells and peri-
cytes that are required for vascular remodeling and for  
production of extracellular matrix responsible for proper 

nephric formation.23 These cells migrate from their posi-
tions around the condensates to areas between the develop-
ing nephrons within the medulla. Although stromal cells are 
derived from the MM cells, it remains unclear whether 
stromal cells and nephric lineages arise from a common 
progenitor MM cell.

DEVELOPMENT OF THE VASCULATURE

The microcirculations of the kidney include the specialized 
glomerular capillary system responsible for production of 
the ultrafiltrate and the vasa recta, peritubular capillaries 
involved in the countercurrent mechanism. In the adult, 
each kidney receives 10% of the cardiac output. Vasculogen-
esis and angiogenesis have been described as two distinct 
processes in blood vessel formation. Vasculogenesis refers to 
de novo differentiation of previously nonvascular cells into 
structures that resemble capillary beds, whereas angiogenesis 
refers to sprouting from these early beds to form mature 
vessel structures including arteries, veins, and capillaries. 
Both processes are involved in development of the renal 
vasculature. At the time of UB invasion at 11 dpc (all timing 
given is for mice), the MM is avascular, but by 12 dpc a rich 
capillary network is present, and by 14 dpc vascularized 
glomeruli are present.

Transplantation experiments support a model whereby 
endothelial progenitors within the MM give rise to renal 
vessels in situ,24 although the origin of large blood vessels is 
still debated. At 13 dpc capillaries form networks around 
the developing nephric tubules, and by 14 dpc the hilar 
artery and first-order interlobar renal artery branches can 
be identified. These branches will form the corticomedul-
lary arcades and the interlobular arteries that branch from 
them. Further branching produces the glomerular afferent 
arterioles. From 13.5 dpc onward, endothelial cells migrate 
into the vascular cleft of developing glomeruli, where they 
undergo differentiation to form the glomerular capillary 
loops (Figure 1.7). The efferent arterioles carry blood away 
from the glomerulus to a system of fenestrated peritubular 
capillaries that are in close contact with the adjacent tubules 
and receive filtered water and solutes reabsorbed from the 
filtrate.25 These capillaries have few pericytes. In compari-
son, the vasa recta, which surround the medullary tubules 
and are involved in urinary concentration, are also fenes-
trated but have more pericytes. They arise from the efferent 
arterioles of deep glomeruli.26 The peritubular capillary 
system surrounding the proximal tubules is well developed 
in the late fetal period, whereas the vasa recta mature 1 to 
3 weeks postnatally.

MODEL SYSTEMS TO STUDY  
KIDNEY DEVELOPMENT

ORGAN CULTURE

THE KIDNEY ORGAN CULTURE SYSTEM:  
CLASSIC STUDIES
Metanephric kidney organ culture (Figures 1.8 and 1.9) 
formed the basis for extensive classic studies of embryonic 
induction. Parameters of induction such as the temporal 
and physical constraints on exposure of the inductive tissue 
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sustained UB branching and early induction of nephrons 
even when cultured for a week. The isolated mesenchyme 
experiment has proved useful in the analysis of renal agen-
esis phenotypes, in which there is no outgrowth of the UB. 
In these cases, the mesenchyme can be placed in contact 
with neural tube to determine whether it has the intrinsic 
ability to differentiate. Most often, when renal agenesis is 
due to the mutation of a transcription factor gene, tubular 
induction is not rescued by neural tube, as could be pre-
dicted for transcription factors which would be expected to 
act in a cell-autonomous fashion.28 In the converse situation, 
in which renal agenesis is caused by loss of a gene function 
in the UB (e.g., Emx2 in the mouse), it is usually possible for 
embryonic neural tube to induce tubule formation in iso-
lated mesenchymes.29 Therefore, the organ culture induc-
tion assay can be used to test hypotheses concerning whether 
a particular gene is required in the UB or the MM. As chemi-
cal inhibitors specific for various signal transduction path-
ways have been synthesized and become available, it has 
been possible to add them to organ cultures and observe 
effects that are informative about the roles of specific path-
ways in development of the kidney. Examples are the uses of 
drugs to block the Erk/MAP kinase, PI3K/Akt, and Notch 
signaling pathways in renal explant cultures.30-32

ANTISENSE OLIGONUCLEOTIDES AND siRNA 
IN ORGAN CULTURE
Several studies have described the use of antisense oligo-
nucleotides and of siRNA (small interfering, or silencing, 
RNA) molecules to inhibit gene expression in kidney organ 
cultures. Among the earliest of these was the inhibition of 
the low-affinity nerve growth factor receptor, p75 or NGFR, 
by antisense oligonucleotides,33 a treatment that decreased 
the growth of cultured embryonic kidneys. A subsequent 
study could not duplicate this phenotype,34 although there 
were possible differences in experimental techniques.35 An 

to the mesenchyme were determined, as were the times 
during which various tubular elements of the nephron were 
first observed in culture.

MUTANT PHENOTYPIC ANALYSES
As originally shown by Grobstein, Saxen, and their col-
leagues in classic studies of embryonic induction, the two 
major components of the metanephric kidney, the MM and 
the UB, could be separated from each other, and the isolated 
mesenchyme could be induced to form nephron-like tubules 
by a selected set of other embryonic tissues, the best example 
of which is embryonic neural tube.4,27 When neural tube is 
used to induce the separated mesenchyme, there is terminal 
differentiation of the mesenchyme into tubules, but not 
significant tissue expansion. In contrast, intact metanephric 
rudiments can grow more extensively, displaying both 

Figure 1.6  Populations of cells within the metanephric mesenchyme. As described in the text, these populations are defined by morpho-
logic and molecular characteristics. Metanephroi from a 14.5 dpc Tcf21-LacZ mouse (A) and a 15.5 dpc Tcf21-LacZ mouse (B) are stained 
for β-galactosidase activity. Tcf21-expressing cells stain blue. Stromal cells (S; pink in C) are seen surrounding condensing mesenchyme (CM). 
Nephrogenic population (green in C) remains unstained. By 15.5 dpc a well-developed interstitial compartment is seen and consists of peritu-
bular fibroblasts, medullary fibroblasts, and pericytes. Loose and condensed mesenchymal cells are also observed around the stalk of the 
ureteric bud in B. v, Renal vesicle; po, podocyte precursors; sp, stromal pericytes; int, interstitium. C, Schematic diagram of mesenchymal 
populations includes the nephrogenic precursors (in green), uninduced mesenchyme (white), condensing mesenchyme around the UB tips and 
stalk (blue), and stromal cell lineage (pink). (Reproduced with permission from Developmental Dynamics.)
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Figure 1.7  Renal vasculature. A, Corrosion resin cast of renal 
vasculature revealing the highly convoluted assembly of the glomeru-
lar capillaries (g). B, Scanning electron micrograph of a glomerulus 
with an exposed endothelial lumen (dashed outlined) showing fenes-
trations. EC, Endothelial cell; Pod, podocyte. (Corrosion cast electron 
micrograph courtesy of Fred Hossler, Department of Anatomy and Cell 
Biology, East Tennessee State University.)
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Figure 1.8  Metanephric organ explants Top (A, B) and lateral (C) views of a kidney organ culture in a center-well dish. Embryonic kidney 
explants are grown at the air-growth medium interface on top of a floating porous polycarbonate filter (dashed lines in A) supported on a metal 
mesh. D, Kidneys grown after 4 days of culture. (Reproduced with permission from Barak H, Boyle SC: Organ culture and immunostaining of 
mouse embryonic kidneys. Cold Spring Harb Protoc 2011[1]:pdb.prot5558, 2011.)

A B

C D

Figure 1.9  Recapitulation of branching and nephrogenesis in renal explant cultures. A, Ureteric tree stained for cytokeratin 8 (Cyk8). 
B, Condensed metanephric mesenchyme stained for WT1. C, Epithelial derivatives of the metanephric mesenchyme stained for E-cadherin 
(Cdh6). D, Proximal tubules stained with Lotus tetraglobulus lectin (LTL). E, Merged image of A through D. F, WT1-expressing cells represent 
the nephron progenitor cells that surround the ureteric bud. G, Cdh6-expression marks the mesenchyme-to-epithelial transformation of nephron 
progenitor cells. H, Early patterning of nascent nephrons along a proximodistal axis. E-H, Cyk8 (magenta), WT1 (red), Cdh6 (green) and LTL 
(blue). (Reproduced with permission from Barak H, Boyle SC: Organ culture and immunostaining of mouse embryonic kidneys. Cold Spring Harb 
Protoc 2011[1]:pdb.prot5558, 2011.)
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additional study using antisense oligonucleotides to Pax2 
also showed this gene to be crucial in epithelialization of 
the MM.36,37 Antisense morpholinos modified with an octa-
guanidine dendrimer moiety to facilitate cell uptake have 
been used to target Wilms’ tumor-1 gene (Wt1) in kidney 

explant cultures. This morpholino-based knockdown  
strategy allowed the identification of WT1 transcriptional 
targets in nephron progenitors, which was technically 
impossible in conventional Wt1 knockout mice because of 
renal agenesis.38 Co-transported with synthetic delivery 



	 CHAPTER 1 — Embryology of the Kidney	 9

may be used to target specific kidney cell lineages (Table 
1.2; Figure 1.10). As with any experimental procedure, 
numerous caveats must be taken into account in the inter-
pretation of data.52,53 These include determining the com-
pleteness of excision at the locus of interest, the timing and 
extrarenal expression of the promoters, and general toxicity 
of expressed proteins to the cell of interest. In spite of these 
issues, tissue-specific conditional gene targeting strategies 
remain powerful tools to study gene functions. The next 
generation of targeting includes improved efficiency using 
bacterial artificial chromosome (BAC) targeting approaches, 
siRNA and microRNA (miRNA) approaches, and large 
genomewide targeting efforts already under way at many 
academic and pharmaceutical institutions.

In contrast to gene targeting experiments in which the 
gene is known at the beginning of the experiment (reverse 
genetics), random mutagenesis represents a complimentary 
phenotype-driven approach (forward genetics) to study the 
physiologic relevance of certain genes. Random mutations 
are introduced into the genome at high efficiency by chemi-
cal or gene trap mutagenesis. Consecutively, large numbers 
of animals are screened systematically for specific pheno-
types of interest. As soon as a phenotype is identified, test 
breeding is used to confirm the genetic nature of the trait. 
Chromosomal mapping and positional cloning are then 
used to determine the identity of the culprit mutant gene. 
There are two major advantages of genomewide approaches 
over reverse genetics. First, most knockouts lead to major 
gene disruptions, which may not be relevant to the subtle 
gene alterations that underlie human renal disease. Second, 
many of the complex traits underlying congenital anomalies 
and acquired diseases of the kidney are unknown, making 
predictions about the nature of the genes that are involved 
in these diseases difficult.

One of the most powerful and well-characterized muta-
gens in the mouse is the chemical mutagen N-ethyl-N-
nitrosourea (ENU). It acts through random alkylation of 
nucleic acids, inducing point mutations in spermatogonial 
stem cells of injected male mice.54,55 ENU mutagenesis intro-
duces multiple point mutations within the spermatogonia 
of the male, which is then bred to a female mouse of differ-
ent genetic background. Resultant offspring are screened 
for renal phenotypes of interest (e.g., dysplastic, cystic) and 

peptides, antisense morpholinos have also been used to 
investigate the negative regulation of ureteric branching 
morphogenesis by semaphorin3a (Sema3a).39,40 Gene 
knockdown using siRNA has also been used to demonstrate 
the importance of Wt1 and Pax2 in nephrogenesis in whole 
organ and dissociated embryonic kidneys.38,41,42 Similar 
siRNA-based knockdown strategies have been successfully 
used to demonstrate the importance of fibronectin, Dact2, 
and estrogen-related receptor γ (Esrrg) in ureteric branch-
ing in whole embryonic renal explant cultures.43-45

ORGAN CULTURE MICROINJECTION
Microinjection in kidney explant cultures can be used to 
selectively target gene expression using a variety of reagents 
(plasmid constructs, viruses, and siRNA) in either the MM 
or the branching ureteric epithelia, depending on the  
site of injection.46,47 Retroviruses encoding mutants of 
polycystin-1 were used to demonstrate that polycystin-1 is 
required for normal ureteric branching patterns.48 Microin-
jection followed by electroporation of DNA plasmid con-
structs has been used to overexpress GDNF (glial cell–derived 
neurotrophic factor), Wt1, Pax2, Vegfa, and Robo2 in the MM 
and to assess the role of these genes in ureteric branching 
and early nephron induction.47,49

TRANSGENIC AND KNOCKOUT MOUSE MODELS

Over the past two decades, the generation and analysis of 
knockout and transgenic mice have provided tremendous 
insight into kidney development (Table 1.1).50,51 Although 
homologous recombination to delete genes within the 
germline, also known as standard “knockout” technology, 
has provided information about the biologic functions of 
many genes in kidney development, it has several disadvan-
tages. Disruption of gene function in embryonic stem (ES) 
cells may result in embryonic or perinatal death, precluding 
the functional analysis of the gene in the kidney that devel-
ops relatively late in fetal life. Additionally, many genes are 
expressed in multiple cell types, and the resulting knockout 
phenotypes can be complex and difficult or impossible to 
dissect. The ability to limit gene targeting to specific renal 
cell types overcomes some of these problems, and the tem-
poral control of gene expression permits more precise char-
acterization of a gene’s function. A number of mouse lines Text continued on p. 17 

Figure 1.10  Glomeruli expressing (A) cyan fluorescent protein (CFP) or (B) β-galactosidase. Transgenic mice were generated using the nephrin 
promoter to direct expression of either CFP or β-galactosidase specifically in developing and mature podocytes. 
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Renal Aplasia (Variable)

CTNNB1 (β-catenin) Renal agenesis or severe renal 
hypoplasia, premature 
differentiation of UB epithelia  
(UB selective)

Colorectal cancer, hepatoblastoma, 
hepatocellular cancer

142

Emx2 Complete absence of urogenital 
system

29

Emx2, PAX2 Duplicated kidneys and ureter, 
ureteral obstruction

CAKUT, VUR 401

Etv4, Etv5 Renal agenesis or severe renal 
hypodysplasia

76,166

EYA1 (Eyes absent-1) Renal agenesis, lack of UB branching 
and mesenchymal condensation

Branchiootorenal syndrome (brachial 
fistulas, deafness)

96, 110

Fgf9, Fgf20 Renal agenesis 230
Fgf10, GDNF, Gfra1 Renal agenesis 172
Fgfr1, Fgfr2 Renal agenesis (MM selective) 240
FRAS1, FREM1, FREM2 UB failure, defect of GDNF 

expression
Fraser’s syndrome (cryptophthalmos, 

syndactyly, CAKUT); Manitoba-
oculotrichoanal (MOTA) syndrome

122, 123, 178-180

GATA3 Renal agenesis, gonad dysgenesis 
(null mutation); ectopic ureteric 
budding, kidney, hydroureter  
(UB selective)

Hypoparathyroidism, sensorineural 
deafness, and renal dysplasia 
(HDRS) syndrome; autoimmune 
disease (rheumatoid arthritis)

136, 137, 139, 140

Gdf11 (growth differentiation 
factor 11)

UB failure, skeletal defects 102, 402

GDNF, Gfra1, RET Renal agenesis or rudimentary 
kidneys, aganglionic megacolon

Hirschsprung disease, multiple 
endocrine neoplasm type IIA/B 
(MEN2A/MEN2B), and familial 
medullary thyroid carcinoma 
(FMTC)

103-106, 118, 119, 
403-406,

GLI3 Renal agenesis, severe renal 
agenesis, absence of renal medulla 
and papilla

Pallister-Hall (PH) syndrome 
(polydactyly, imperforate anus, 
abnormal kidneys, defects in the 
gastrointestinal tract, larynx, and 
epiglottis)

212, 213

Grem1 (Gremlin) Renal agenesis; apoptosis of the MM 107
GRIP1 Renal agenesis Fraser’s syndrome 182-184
Hox-A11/D11 Distal limbs, vas deferens 407
Hs2st1 (heparan sulfate 2 

O-sulfotransferase 1)
Lack of UB branching and 

mesenchymal condensation
408

Isl1 (islet1) Renal agenesis, renal hypoplasia, 
hydroureter (MM selective)

409

ITGA8 (integrin α8) Renal agenesis, renal hypodysplasia Fraser’s syndrome 124
Itgb1 (integrin β1) Disrupted UB branching, bilateral 

renal agenesis, hypoplastic 
collecting duct system (collecting 
duct selective); podocyte 
dedifferentiation (podocyte 
selective)

Fraser’s syndrome 134, 410, 411

Kif26b Renal agenesis, failed UB attraction 
to the MM

125

Lamc1 UB failure, delayed nephrogenesis, 
water transport defects

185

LHX1/LIM1 Renal agenesis (null mutant); renal 
hypoplasia, UB branching defect, 
hydronephrosis, distal ureter 
obstruction (UB selective); arrested 
nephrogenesis, nephron patterning 
defects (MM selective)

Mayer-Rokitansky-Kuster-Hauser 
(MRKH) syndrome (müllerian duct 
agenesis)

97, 412, 413

LRP4 Delayed UB induction, failed MM 
induction, syndactyly, oligodactyly

Cenani-Lenz syndrome 414-417
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Npnt (nephronectin) Delay of UB invasion into MM 126
Osr1/Odd1 Lack of MM, adrenal gland, gonads, 

defects in formation of pericardium 
and atrial septum

98, 109

PAX2 Renal hypoplasia, VUR CAKUT, VUR, optic nerve colobomas 36, 37
PAX2, PAX8 Defect in intermediate mesoderm 

transition, failure of pronephric duct 
formation

CAKUT, VUR, optic nerve colobomas 418

PTF1Α (pancreas transcription 
factor 1α subunit/Danforth 
short-tail)

Failure of UB induction; anal atresia, 
persistent cloaca, skeletal 
malformation

Pancreatic and cerebellar agenesis; 
diabetes mellitus

419-421

Retinoic acid receptors (Rara, 
Rarb2)

Renal hypoplasia, dysplasia, 
hydronephrosis, skeletal and 
multiple visceral abnormalities

7, 9, 68

SALL1 Renal agenesis, severe renal 
hypodysplasia

Townes-Brock syndrome (anal, renal, 
limb, ear anomalies)

99, 422

SHH (Sonic hedgehog) Bilateral or unilateral renal agenesis, 
unilateral ectopic dysplastic kidney, 
defective ureteral stromal 
differentiation

Vertebral defects, anal atresia, 
cardiac defects, tracheoesophageal 
fistula, renal anomalies, and limb 
abnormalities (VACTERL) syndrome

209

SIX1 Lack of UB branching and 
mesenchymal condensation

Branchiootorenal syndrome 96, 110

SOX8, SOX9 Renal genesis, renal hypoplasia Camptomelic dysplasia (limb and 
skeletal defects, abnormal gonad 
development)

423

WT1 Renal and gonadal agenesis, severe 
lung, heart, spleen, adrenal, and 
mesothelial abnormalities

Wilms’ tumor, aniridia, genitourinary 
abnormalities, and retardation 
(WAGR) syndrome; Denys-Drash 
syndrome

28, 38, 337, 338

Hypoplasia/Dysplasia/Low Nephron Mass

Adamts1 Hypoplasia of the renal medulla, 
hydronephrosis

250, 253

Adamts1, Adamts4 Hypoplasia of the renal medulla, 
hydronephrosis

254

Agtr2 (angiotensin II type-2 
receptor)

Various collecting system defects CAKUT 202, 321, 322

Ald1a2/Raldh2 (retinal 
dehydrogenase)

Renal hypoplasia, hydronephrosis, 
ectopic ureter

139

BMP1RA/Alk3 Hypoplasia of renal medulla, fewer 
UB branches (UB selective)

Juvenile polyposis syndrome 200

Bmp7 Reduced MM survival 225
Cdc42, Yap Renal hypoplasia, oligonephronia, 

defects in mesenchyme to 
epithelial transition (CM selective)

424

Cfl1, Dstn (cofilin1, destrin) Renal hypodysplasia, ureter 
duplication

425

CTNNB1 (β-catenin) Severely hypoplastic kidney, lack of 
nephrogenic zone and S-shaped 
body (CM selective)

Colorectal cancer, hepatoblastoma 223

DICER1 Renal hypoplasia, dysplasia, cysts 
(UB selective); renal hypoplasia 
characterized by premature 
termination of nephrogenesis  
(MM selective)

Pleopulmonary blastoma 426

Dkk1 (Dickkopf 1) Overgrown renal papilla (renal tubule 
and collecting duct restricted)

196

Dlg1, Cask Renal hypoplasia and dysplasia, 
premature depletion of nephrogenic 
precursor cells

326, 427

Continued on following page
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Egfr (epidermal growth factor 
receptor)

Hypoplasia of the renal papilla, 
moderate polyuria, and urine 
concentration defects

194

Esrrg Agenesis of renal papilla 43
Fat4 Failed nephrogenesis (mesenchyme-

to-epithelial transition), expansion 
of nephrogenic precursor zone 
(stroma selective)

274

Fgf7 Small kidneys, reduction in nephron 
number

198

FGF8 Renal dysplasia, arrested 
nephrogenesis at pretubular 
aggregate stage (MM selective)

Kallmann’s syndrome, hypogonadism 428, 429

Fgf10 Renal hypoplasia, multiorgan 
developmental defects including 
the lungs, limb, thyroid, pituitary, 
and salivary glands

199

Fgfr1, Fgfr2 Renal agenesis (MM selective) 240
Fgfr2 Renal hypoplasia, hydronephrosis 

(UB selective)
69

FOXC2 Renal hypoplasia AD lymphedema-distichiasis 
syndrome

214, 430

Foxd1 (BF-2) Accumulation of undifferentiated CM, 
attenuated UB branching, stromal 
patterning defects

22, 266, 268

Foxd1 Mild renal hypoplasia (UB selective) 431
Fzd4, Fzd8 (frizzled 4/8) Impaired UB branching, renal 

hypoplasia
432

LGR4 Severe renal hypoplasia and 
oligonephronia; renal cysts

Aniridia–genitourinary anomalies–
mental retardation syndrome

433, 434

LMX1B Renal dysplasia, skeletal 
abnormalities

Nail-patella syndrome 334, 341

Mdm2 (murine double 
minute 2)

Renal hypoplasia and dysplasia, 
severely impaired UB branching 
and nephrogenesis (UB selective); 
depletion of nephrogenic 
precursors (MM selective)

435, 436

Mf2 Renal hypoplasia, oligonephronia 437
Pbx1 Reduced UB branching, delayed 

mesenchyme-to-epithelial 
transformation, dysgenesis of 
adrenal gland and gonads

438, 439

Plxnb2 (plexin B2) Renal hypoplasia and ureter 
duplication

440

Pou3f3 (Brn1) Impaired development of distal 
tubules, loop of Henle, and macula 
densa; distal nephron patterning 
defect

251

Prr (prorenin receptor) Renal hypoplasia, renal dysplasia  
(UB selective)

441

Psen1, Psen2 (presenilins 1/2) Severe renal hypoplasia, severe 
defects in nephrogenesis

247

Ptgs2 (prostaglandin 
endoperoxide synthase 2/
cyclooxygenase-2)

Oligonephronia 442

Rbpj Severe renal hypoplasia, 
oligonephronia, loss of proximal 
nephron segments, tubular cysts 
(MM selective)

248, 249

Shp2 Severe impairment of UB branching, 
renal hypoplasia

163
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Six1 Hydronephrosis, hydroureter, 
abnormal development of ureteral 
smooth muscle

309

Six2 Renal hypoplasia, premature 
depletion of nephrogenic 
precursors

235

Tbx18 Hydronephrosis, hydroureter, 
abnormal development of ureteral 
smooth muscle

307, 309

Tfap2b MM failure, craniofacial and skeletal 
defects

443

TRPS1 Impaired UB branching, renal 
hypoplasia

Trichorhinophalangeal syndrome 
(skeletal defects)

444

Wnt4 Failure of MM induction 223
Wnt7b Complete absence of medulla and 

renal papilla (UB selective)
190

Wnt9b Vestigial kidney, failure of MM 
induction

Cystic kidney (collecting duct 
selective)

191, 220

Wnt11 Impaired ureteric branching, renal 
hypoplasia

165

Mislocalized or Ectopic UB/Increased UB Branching

Bmp4, Bmp7 Ectopic UB, renal hypodysplasia, 
hydroureter, defective 
ureterovesical junction

218, 445

Cer1 Increased ureteric branching, altered 
spatial organization of ureteric 
branches

446

Foxc1 Duplex kidneys, ectopic ureters, 
hydronephrosis, hydroureter

214

HNF1B, PAX2 Renal hypoplasia, duplex kidneys, 
ectopic ureters, megaureter, 
hydronephrosis

CAKUT 447

Lzts2 (leucine-zipper putative 
tumor suppressor 2)

Duplex kidneys/ureters, 
hydronephrosis, hydroureter

448

Plxnb1 (plexin B1) Increased ureteric branching 449
Plxnb2 (plexin B2) Renal hypoplasia and ureter 

duplication
440

Sema3a Increased ureteric branching  
(UB selective)

40

Slit2, ROBO2 Increased UB branching CAKUT, VUR 215, 216
Spry1 (sprouty 1) Supernumerary UBs, multiple ureters 70, 173

Cysts

Aqp11 (aquaporin-11) Abnormal vacuolization of proximal 
tubules; polycystic kidneys

450

Bcl2 Renal hypoplasia and cysts 451
Bicc1 Polycystic kidneys 452
Bpck/TMEM67 Polycystic kidneys, hydrocephalus Meckel’s syndrome (multicystic renal 

dysplasia, neural tube defects)
453

Erbb4 Renal cysts (overexpression in renal 
tubules)

Dilated and mispolarized tubules, 
increased renal fibrosis (renal 
tubule deletion)

454

FAT4 Renal cysts, disrupted hair cell 
organization in inner ear

Van Maldergem’s syndrome (mental 
retardation, abnormal craniofacial 
features, deafness, skeletal and limb 
malformations, renal hypoplasia)

259, 455

Continued on following page
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

GLIS3 Polycystic kidney, neonatal diabetes Congenital hypothyroidism, diabetes 
mellitus, hepatic fibrosis, congenital 
glaucoma

456, 457

GPC3 (glypican-3) Disorganized tubules and medullary 
cysts

Simpson-Golabi-Behmel syndrome 458-460

HNF1B Polycystic kidney disease (tubular-
selective)

Maturity-onset diabetes of the young 
type 5 (MODY5)

260, 261

Ift88/Orpk (intraflagellar 
transport 88/Oak Ridge 
Polycystic Kidney Disease)

Polycystic kidneys; defective left-right 
asymmetric patterning

461, 462

Invs (inversin) Polycystic kidneys, inverted viscera 463, 464
Kif3A Polycystic kidney disease (tubular-

selective)
465

MAFB (Kreisler) Decreased glomeruli, cysts, and 
tubular dysgenesis

Musculoaponeurotic fibrosarcoma 466, 467

MKS1 Renal hypoplasia and cysts Meckel’s syndrome (multicystic renal 
dysplasia, neural tube defect)

468

PKD1, PKD2 Renal cysts ADPKD, ARPKD 469
PTEN Abnormal ureteric bud branching, 

cysts (UB selective)
Cowden’s disease, Bannayan-Riley-

Ruvalcaba syndrome, various 
tumors

164

Taz/Wwtr1 Polycystic kidneys, emphysema 470, 471
VHL Renal cysts (tubular-selective) Von Hippel–Lindau syndrome 472
Xylt2 (xylosyltransferase 2) Polycystic kidneys and liver 473

Later Phenotypes (Glomerular, Vascular, and Glomerular Basement Membrane)

ACE (angiotensin-converting 
enzyme)

Atrophy of renal papillae, vascular 
thickening and hypertrophy, 
perivascular inflammation

Chronic systemic hypotension 203, 204

ACTN4 (α-actinin 4) Glomerular developmental defects, 
FSGS

SRNS 349, 350

AGT (angiotensinogen) Atrophy of renal papillae, vascular 
thickening and hypertrophy, 
perivascular inflammation

Essential hypertension, renal tubular 
dysgenesis

205, 326

AGTR1A (AT1A) Hypertrophy of juxtaglomerular 
apparatus and expansion of renin 
cell progenitors, mesangial cell 
hypertrophy

Essential hypertension, renal tubular 
dysgenesis

474

AGTR1A, AGTR1B 
(AT1A, AT1B)

Atrophy of renal papillae, vascular 
thickening and hypertrophy, 
perivascular inflammation

Essential hypertension, renal tubular 
dysgenesis

206

AMPD (AMP [adenosine 
monophosphate] deaminase)

Podocyte foot process effacement, 
proteinuria

Minimal change nephrotic disease 475

Angpt1/ANG1 (angiopoietin 1) Simplification and dilation of 
glomerular capillaries; detachment 
of glomerular endothelium from the 
GBM; loss of mesangial cells

286

Angpt2/ANG2 (angiopoietin 2) Cortical peritubular capillary 
abnormalities (null allele)

Apoptosis of glomerular capillaries, 
proteinuria (transgenic 
overexpression)

295, 296

ARHGDIA/RhoGDIα FSGS SRNS 351, 352
Bmp7 Hypoplastic kidney, impaired 

maturation of nephron, reduced 
proximal tubules (podocyte 
selective)

302

CD151 Podocyte foot process effacement, 
disorganized GBM, tubular cystic 
dilation

Nephropathy (FSGS) associated with 
pretibial epidermolysis bullosa and 
deafness

476, 477
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

CD2AP Podocyte foot process  
effacement, immunotactoid 
nephropathy

FSGS 387

Cdc42 Congenital nephrosis; impaired 
formation of podocyte foot 
processes (podocyte selective)

374

Cmas Congenital nephrosis; impaired 
formation of podocyte foot 
processes, defective sialylation

478

COL4A1, COL4A3, COL4A4, 
COL4A5

Disorganized GBM, proteinuria Alport’s syndrome 479-482

Crk1/2, CrkL Albuminuria, altered podocyte 
cytoarchitecture (podocyte 
selective)

483

Cxcl12/SDF1 (stroma-derived 
factor 1), CXCR4, Cxcr7

Petechial hemorrhage in the kidneys, 
glomerular aneurysm, fewer 
glomerular fenestrations, reduced 
mesangial cells, podocyte foot 
process effacement, mild renal 
hypoplasia

WHIM (warts, 
hypogammaglobulinemia, 
infections, and myelokathexis) 
syndrome

305, 306, 484

DICER1 Podocyte damage, albuminuria, 
end-stage kidney failure (podocyte 
selective); reduced renin 
production, renal vascular 
abnormalities, striped fibrosis (renin 
cell selective)

Pleuropulmonary blastoma 329, 396-398

Dnm1, Dnm2 (dynamin 1/2) Podocyte foot process effacement 
and proteinuria (podocyte selective)

485

EphB4 Aberrant development of vascular 
shunts in glomerular arterioles 
(transgenic overexpression in renal 
tubules and parietal cells of 
Bowman’s capsule)

300

Ephrin-B2 Dilation of glomerular capillaries 301
Fat1 Foot process fusion, failure of foot 

process formation
353

Flt1/VEGFR1 Nephrotic syndrome 395
Foxc2 Impaired podocyte differentiation, 

dilated glomerular capillary loop, 
poor mesangial migration

64

Foxi1 Distal renal tubule acidosis; absence 
of collecting duct intercalated cells

255

Fyn Podocyte foot process effacement, 
abnormal slit diaphragms, 
proteinuria

382, 486

Gne/Mnk (glucosamine-2-
epimerae/N-
acetylmannosamine kinase)

Hyposialylation defect, foot process 
effacement, GBM splitting, 
proteinuria and hematuria

487

Ilk (integrin-like kinase) Nephrotic syndrome (podocyte 
selective)

384

INSR (insulin receptor) Podocyte effacement, GBM 
alteration, proteinuria (podocyte 
selective)

Diabetic nephropathy 488

Itga3 (integrin α3) Reduced UB branching, glomerular 
defects, poor foot process 
formation

195, 197

Itgb1 (integrin β1) Podocyte loss, capillary and 
mesangial degeneration, 
glomerulosclerosis (podocyte 
selective)

410, 411

Continued on following page
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Kirrel (Neph1) Abnormal slit diaphragm function, 
FSGS

63

Lama5 Defective glomerulogenesis, abnormal 
GBM, poor podocyte adhesion, 
loss of mesangial cells

186

LAMB2 Proteinuria prior to the onset of foot 
process effacement

Pierson’s syndrome 187, 489

LMX1B Impaired differentiation of podocytes, 
cytoskeletal disruption in 
podocytes

Nail-patella syndrome 490-492

Mafb (Kreisler) Abnormal podocyte differentiation 335
Mpv17 (mitochondrial inner 

membrane protein 17)
Nephrotic syndrome 493

Mtor/mTOR (mechanistic 
target of rapamycin)

Proteinuria, podocyte autophagy 
defects (podocyte selective)

494

MYO1E Podocyte foot process effacement 
and proteinuria

SRNS 354, 495, 496

Nck1, Nck2 Failure of foot process formation 
(podocyte selective)

380

Nid1 (nidogen-1/entactin-1) Abnormal GBM 497
NPHS1 (nephrin) Absent slit diaphragms, congenital 

nephrotic syndrome
Congenital nephrosis of the Finnish 

type, childhood-onset steroid-
resistant nephritic syndrome, 
childhood- and adult-onset FSGS

342

NPHS2 (podocin) Congenital nephrosis, FSGS, vascular 
defects

SRNS, congenital nephritic syndrome 343, 498

NOTCH1, NOTCH2 Lack of glomerular endothelial and 
mesangial cells (standard knockout)

Lack of podocytes and proximal 
tubular cells (MM selective); 
impaired nephrogenesis (cap 
mesenchyme selective)

Alagille’s syndrome (cholestatic liver 
disease, cardiac disease, kidney 
dysplasia, renal cysts, renal tubular 
acidosis)

243, 244, 248, 499

Pdgfb/PDGFR-β Lack of mesangial cells, ballooned 
glomerular capillary loop

332, 333

Pik3c3/Vps34 FSGS, defects in vesicular trafficking 
(podocyte selective)

500, 501

Prkci/aPKCλ/ι (atypical protein 
kinase C λ/ι)

Defect of podocyte foot processes, 
nephrotic syndrome (podocyte 
selective)

375, 376

PTPRO/GLEPP1 (glomerular 
epithelial protein 
phosphatase 1)

Broadened podocyte foot processes 
with altered interdigitation patterns

SRNS 487, 502

Rab3A Albuminuria, disorganization of 
podocyte foot process structure

15

Rbpj Decreased renal arterioles, absence 
of mesangial cells, and depletion of 
renin cells (stromal cell selective)

Reduction in juxtaglomerular cells, 
impaired renin synthesis (renin cell 
selective)

310, 331

Rhpn1 (rhophilin-1) FSGS, podocyte foot process 
effacement, GBM thickening

355

ROBO2 Abnormal pattern of podocyte foot 
process interdigitation, focal 
effacement of foot processes, 
proteinuria

CAKUT, VUR 503

SLC5A2/SGLT2 (sodium-
glucose transporter 2)

Elevated urinary excretion of glucose, 
calcium, and magnesium

Glucosuria 504

Sh3gl1/2/3 (endophilin 1/2/3) Podocyte foot process effacement 
and proteinuria, neuronal defects

485
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Table 1.1  Summary of Knockout and Transgenic Models for Kidney Development (Continued)

Gene Mutation or 
Knockout

Renal and Urogenital  
Tract Phenotypes, Other  
Tissues Affected Associated Human Disease(s) Reference(s)

Sirpa/SIRPα Irregular podocyte foot process 
interdigitation; mild proteinuria

505

Sox4 Oligonephronia, podocyte 
effacement, GBM defects (MM 
selective)

506

SOX17, SOX18 Vascular insufficiency in kidneys and 
liver; ischemic atrophy of renal and 
hepatic parenchyma; defective 
postnatal angiogenesis

HLT (hypotrichosis-lymphedema-
telangiectasia) syndrome (hair, 
vascular and lymphatic disorder)

311, 314

Synj1 (synaptojanin 1) Podocyte foot process effacement 
and proteinuria; neuronal defects

485

Tcf21 (Pod1/capsulin/
epicardin)

Lung and cardiac defects, sex 
reversal and gonadal dysgenesis, 
vascular defects, disruption in UB 
branching, impaired podocyte 
differentiation, dilated glomerular 
capillary, poor mesangial migration

6, 264

Tie1 Tie1–null cells fail to contribute to the 
glomerular endothelium

297

TRPC6 Protected from angiotensin-mediated 
or proteinuria or complement-
dependent glomerular injury (null 
mutation); podocyte foot process 
effacement and proteinuria 
(transgenic overexpression in the 
podocyte lineage)

SRNS, FSGS 356, 393, 394, 
507-510

Vegfa Endotheliosis, disruption of 
glomerular filtration barrier 
formation, nephrotic syndrome 
(podocyte selective)

279, 280, 511

VHL Rapidly progressive 
glomerulonephritis (podocyte 
selective)

Von Hippel–Lindau syndrome 304

AD, Autosomal dominant; AR, autosomal recessive; CAKUT, congenital anomalies of the kidney and urinary tract; CM, cap mesenchyme; 
FSGS, focal segmental glomerulosclerosis; GBM, glomerular basement membrane; MM, metanephric mesenchyme; PKD, polycystic 
kidney disease; SRNS, steroid-resistant nephrotic syndrome; UB, ureteric bud; VUR, vesicoureteral reflux.

heritability. Mutations may be complete or partial loss of 
function, gain of function, or altered function and can have 
either dominant or recessive effect. The specific locus muta-
tion frequency of ENU is 1 in 1000. Assuming a total number 
of 25,000 to 40,000 genes in the mouse genome, a single 
treated male mouse should have between 25 and 40 differ-
ent heterozygous mutagenized genes. In the case of multi-
genic phenotypes, segregation of the mutations in the next 
generation allows the researcher to focus on monogenic 
traits. In each generation, 50% of the mutations are lost, 
and only the mutation underlying the selected phenotype 
is maintained in the colony. A breeding strategy that includes 
backcrossing to the female genetic strain enables rapid 
mapping of the ENU mutation that occurred on the male 
genetic background.

The screening in ENU mutagenesis experiments can 
focus on dominant or recessive renal mutations. Screening 
for dominant phenotypes is popular because breeding 

schemes are simple and a great number of mutants can be 
recovered through this approach. About 2% of all first-
generation offspring mice display a heritable phenotypic 
abnormality.56,57 One of the fruitful results obtained with this 
approach is the identification of a mutation in the aquapo-
rin 11 gene (Aqp11) that causes severe proximal tubule 
injury and vacuolation of the renal cortex resulting in renal 
failure and perinatal death.58 It is possible to design “sensi-
tized screens” on a smaller scale, thereby improving the 
ability to identify genes in a pathway of interest. For example, 
in renal glomerular development, the phenotype of a 
genetic mouse strain with a tendency to development of 
congenital nephrosis (e.g., CD2AP haploinsufficiency) may 
be enhanced or suppressed by breeding a female of  
the strain to a mutagenized male.59 The modifier gene 
may then be mapped using the approach outlined earlier. 
This approach has been successfully used to identify genes 
involved in neural development.60,61
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Table 1.2  Conditional Mouse Lines for the Kidney

Promoter Renal Expression Extrarenal Expression Reference(s)

11Hsd2 (11β-hydroxysteroid 
dehydrogenase-2)

Principal cells of collecting duct, 
connecting tubules

Amygdala, cerebellum, colon, 
ovary, uterus, epididymis, 
salivary glands

512

Aqp2 (aquaporin-2) Principal cells of collecting duct Testis, vas deferens 513
Atp6v1b1 (V-ATPase-B1) Collecting ducts (intercalated cells), 

connecting tubule
514, 515

Bmp7 Cap mesenchyme 516
Cdh16/Ksp-cadherin Renal tubules, collecting ducts, ureteric 

bud, wolffian duct, mesonephros
Müllerian duct 75, 517

Cited1 Cap mesenchyme 18
Emx1 Renal tubules (proximal and distal 

tubules)
Cerebral cortex, thymus 518

Foxd1/BF2 Stromal cells 519
Ggt1 (gamma-glutamyl transferase 1) Cortical tubules 520
HoxB6 Metanephric mesenchyme Lateral mesoderm, limb buds 409, 521
HoxB7 Ureteric bud, wolffian duct, collecting 

ducts, distal ureter
Spinal cord, dorsal root ganglia 209

Kap (kidney androgen regulated 
protein)

Proximal tubules Brain 522

Klf3 Collecting ducts Gonads 541
Nphs1 (nephrin) Podocytes Brain 523, 524
Nphs2 (podocin) Podocytes 525
Osr2 Condensing metanephric mesenchyme; 

glomeruli
Palatal mesenchyme 526

Pax2 Pronephric duct, wolffian duct, ureteric 
bud, cap mesenchyme

Inner ear, midbrain, cerebellum, 
olfactory bulb

527

Pax3 Metanephric mesenchyme Neural tube, neural crest 525, 528, 529
Pax8 Renal tubules (proximal and distal 

tubules) and collecting ducts (Tet-On 
inducible system)

530

Pdgfrb (PDGFR-β) Mesangial cells, vascular smooth 
muscles

Pericytes, vascular smooth 
muscles

301, 531

Pepck Proximal tubules Liver 472
Rarb2 Metanephric mesenchyme 412
Ren1 (Renin) Juxtaglomerular cells, afferent arterioles, 

mesangial cells
Adrenal gland, testis, 

sympathetic ganglia, etc.
319

Ret Ureteric bud, collecting ducts Dorsal root ganglion, neural 
crest

532

Sall1 Metanephric mesenchyme (tamoxifen-
inducible system)

Limb buds, central nervous 
system, heart

533

Slc5a2/SGLT2 (sodium-glucose 
transporter 2)

Proximal tubules 534

Six2 Cap mesenchyme 19
Sox18 Cortical and medullary vasculature Blood vessel and precursor of 

lymphatic endothelial cells
535-537

Spink3 Medullary tubules (distal or connecting 
tubules?)

Mesonephric tubules, pancreas, 
lung, liver, gastrointestinal 
tract

528, 529, 538

T (brachyury) Whole kidney (both ureteric bud and 
metanephric mesenchyme)

Panmesodermal 428

Tcf21 (Pod1) Metanephric mesenchyme, cap 
mesenchyme, podocytes, stromal cells

Epicardium, lung mesenchyme, 
gonad, spleen, adrenal gland

193

Umod (uromodulin/Tamm-Horsfall 
protein)

Thick ascending loops of Henle Testis, brain 539

Wnt4 Renal vesicles, nascent nephrons 
(comma- and S-shaped bodies)

19, 540
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Other genomewide approaches that have led to the dis-
covery of novel genes in kidney development and disease 
are gene trap consortia62,63 and genomewide transcriptome 
and proteome projects.64-66 The interested reader is referred 
to the websites for the Centre for Modeling Human Disease 
(www.cmhd.ca), the International Gene Trap Consortium 
(www.genetrap.org), Knockout Resources to Conquer 
Human Disease (www.tigm.org), and the Human Kidney & 
Urine Proteome Project (www.hkupp.org).

IMAGING AND LINEAGE TRACING STUDIES

Detailed imaging of renal structures and morphogenetic 
processes has benefited significantly from the availability 
and development of multiple fluorescent proteins. The 
advent of genetically modified mice that express fluorescent 
proteins revolutionized cell lineage and mapping studies 
allowing high-resolution live visualization of morphogenetic 
events both in situ and in cultured organ explants. Targeted 
labeling of cells with fluorescent proteins can be achieved 
by driving expression of fluorescent proteins under direct 
control of a cell-specific promoter. Alternatively, a Cre driver 
mouse can be crossed with a fluorescent reporter animal, 
whereby Cre recombinase (an enzyme that triggers swap-
ping, or recombination, of stretches of DNA in chromo-
somes) turns on the constitutive expression of a fluorescent 
protein. This Cre-driven strategy is particularly valuable in 
cell lineage tracking and fate mapping analysis because both 
the progenitor and its subsequent derivatives become fluo-
rescently labeled. A third method involves spatiotemporal 
induction of fluorescent protein expression, allowing for 
the fluorescence to be turned on or off through administra-
tion of doxycycline or tamoxifen by either the tetracycline 
(Tet)- or estrogen receptor (ERT2)–dependent inducible 
system, respectively. This third method allows for the incom-
plete and pulse labeling of certain cell lineages, permitting 
the tracking of the fate and migratory behavior of individual 
cells in real time.

HoxB7-EGFP is the first fluorescent transgene developed 
to visualize renal development.67 Enhanced green fluores-
cent protein (EGFP), placed under the control of the HoxB7 
promoter, specifically labels the wolffian duct and the ure-
teric epithelial lineage. HoxB7-EGFP has therefore proved to 
be invaluable in studying the rates and pattern of ureteric 
branching morphogenesis and ureteral development, 
including disruption of these events in the context of  
particular mutant backgrounds.68-71 The HoxB7–myr-Venus 
transgene, designed to express a membrane-bound myris-
toylated variant of EGFP (myr-Venus), allows for the visual-
ization of individual ureteric epithelial cells by confocal 
microscopy, thus facilitating observation of changes in cell 
shape and position.72 Other fluorescent transgenes for 
imaging of ureteric epithelia are Ret-EGFP and Ksp-cadherin 
(Cdh16-EGFP). In Ret-EGFP mice, EGFP expression is most 
prominent in the ampullary tips of the UB.73,74 In contrast, 
fluorophore expression is restricted in the UB trunk and 
stalk, and absent in the UB tips, in Cdh16-EGFP mice.75 An 
ingenious strategy involving the creation of chimeric animals 
with wild-type epithelial cells expressing HoxB7-EGFP 
that are intermingled with cells derived from mutant ES 
cells engineered to express CFP (cyan fluorescent protein) 
under the control of HoxB7-Cre unraveled the distinctive 

dependence on genes such as Ret, Etv4, Etv5, and Spry1 in 
the cellular sorting and rearrangement needed for ureteric 
branching (Figure 1.11).76,77 Inducible transgene expression 
systems can be very useful in labeling a small subset of cells 
to enable the fate of the cells to be monitored temporally. 
A tamoxifen-inducible strategy to mark ureteric epithelial 
cells with myr-Venus has been cleverly used to observe the 
unique manner in which proliferating UB cells delaminate 
into the UB lumen and reposition themselves within the 
expanding UB ampullary tip.78

Lgr5-EGFP, Cited1-EGFP, and a variety of Six2-EGFP trans-
genes have been employed to characterize the self-renewing 
capacity and multipotency of nephron progenitor cells 
within the cap mesenchyme.18,19,79 The mechanism by which 
nephrogenic and ureteric epithelia are physically conjoined 
via the invasion of the UB tip by distal nephron precursors 
has been imaged through the targeted expression of myr-
Venus under the control of a Six2-Cre driver.16 A wide variety 
of fluorescent protein transgenes and Cre transgenes are 
now available to characterize the development and organi-
zation of multiple compartments of the kidney (see Table 
1.2).80

NONMAMMALIAN MODEL SYSTEMS FOR 
KIDNEY DEVELOPMENT

Organisms separated by millions of years of evolution from 
humans still provide useful models to study the genetic basis 
and function of mammalian kidney development. This con-
tinuing feature stems from the facts that all of these organ-
isms possess excretory organs designed to remove metabolic 
wastes from the body and that genetic pathways involved in 
other aspects of invertebrate development may serve as tem-
plates to dissect pathways in mammalian kidney develop-
ment. In support of the latter argument, elucidation of the 
genetic interactions and molecular mechanism of the 
Neph1 ortholog and nephrin-like molecules SYG-1 and 
SYG-2 in synapse formation in the soil nematode Caenorhab-
ditis elegans is providing major clues to the function of their 
corresponding genes in glomerular and slit diaphragm for-
mation and function in mammals.81

The excretory organs of invertebrates, which differ greatly 
in their structure and complexity, range in size from a few 
cells in C. elegans to several hundred cells in the malpighian 
tubules of the fly Drosophila to the more recognizable kidneys 
in amphibians, birds, and mammals. In C. elegans, the excre-
tory system consists of a single large H-shaped excretory cell, 
a pore cell, a duct cell, and a gland cell.82,83 C. elegans pro-
vides many benefits as a model system: the availability of 
powerful genetic tools including “mutants by mail,” short 
life and reproductive cycle, publicly available genome 
sequence and resource database (www.wormbase.org), the 
ease of performing genetic enhancer-suppressor screens in 
worms, and the fact that they share many genetic pathways 
with mammals. Major contributions to our understanding 
of the function of polycystic and cilia-related genes have 
been made from studying C. elegans. The PKD1 and PKD2 
homologs in C. elegans, lov-1 and lov-2, are involved in cilia 
development and function of the mating organ required for 
mating behavior.84,85 Strides in understanding the function 
of the slit diaphragm have also been made from studies of 
C. elegans, as described earlier.

http://www.cmhd.ca
http://www.genetrap.org
http://www.tigm.org
http://www.hkupp.org
http://www.wormbase.org
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definitive kidney in amphibians. The pronephros found in 
larval stage zebrafish (Dario rerio) consists of two tubules 
connected to a fused, single, midline glomerulus. The 
zebrafish pronephric glomerulus expresses many of the 
same genes found in mammalian glomeruli (e.g., Vegfa, 
Nphs1, Nphs2, and Wt1) and contains podocytes and fenes-
trated endothelial cells.90 Advantages of the zebrafish as a 
model system include its short reproductive cycle, transpar-
ency of the larvae with easy visualization of defects in pro-
nephric development without sacrifice of the organism, 
availability of the genome sequence, the ability to rapidly 
knock down gene function with morpholino oligonucle-
otides, and the ability to perform functional studies of filtra-
tion using fluorescently tagged labels of varying sizes.91 
These features make zebrafish amenable to both forward 
and reverse genetic screens. Currently, multiple laboratories 
perform knockdown screens of mammalian homologs and 

In Drosophila, the “kidney” consists of malpighian tubules 
that develop from the hindgut and perform a combination 
of secretory, resorption, and filtering functions.86 They 
express a number of mammalian gene homologs (e.g., Cut, 
members of the Wingless pathway) that have subsequently 
been shown to play major roles in mammalian kidney devel-
opment. Furthermore, studies on myoblast fusion and 
neural development in Drosophila—two processes that may 
not appear to be related to kidney development at first 
glance—have provided major clues to the development  
and function of slit diaphragms.87 Mutations in the fly 
Neph ortholog, irregular chiasm C-roughest (irreC-rst), are 
associated with neuronal defects and abnormal patterning 
of the eye.88,89

The pronephros, which is only the first of three stages of 
kidney development in mammals, is the final and only 
kidney of jawless fishes, whereas the mesonephros is the 

Figure 1.11  Cell fate tracing through genetic expression of fluorophores. Segregation of Ret-deficient cells in the outgrowth and branch-
ing of the ureteric bud (UB). A, Ret-null embryonic stem cells (ES) expressing HoxB7-GFP (green fluorescent protein) were mixed with a wild-
type transgenic blastocyst (HoxB7-Cre: R26R-CFP [cyan fluorescent protein]). This process generates chimeric animals in which Ret-null cells 
exhibit GFP fluorescence and wild-type UB cells express CFP. B, At 9.5 dpc (days post coitum), Ret-null epithelial cells are intermingled with 
wild-type cells in the wolffian duct (WD). C, At 10 dpc, when the dorsal side of the WD begins to swell, the region where the UB will emerge 
becomes enriched with CFP-expressing but not Ret-null cells. D and E, At around 10.5 dpc, the UB is formed exclusively by wild-type cells. 
F, Upon elongation of the UB at 11 dpc, the bulbous distal tip of the UB is formed by wild-type cells but the Ret-null cells begin to contribute 
to the trailing trunk structure. G and H, During the initial branching of the UB at around 11.5 dpc, Ret-null cells are excluded from the distal 
ampullary UB tips. I, In contrast, control cells expressing Ret and GFP contribute to the whole branching UB structure. (Reproduced with 
permission from Chi X, Michos O, Shakya R, et al: Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morpho-
genesis. Dev Cell 17:199-209, 2009.)
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The work with the organ culture system provided an 
extensive framework on which to base further studies of 
organ development, and the system remains in extensive use 
to this day. However, the modern era of studies on the early 
development of the kidney began with the observation of 
renal agenesis phenotypes in gene-targeted or knockout 
mice, the earliest among these being the knockout of several 
transcription factors, including the WT1, Pax2, Eya1, Osr1/
Odd1, Six1, Sall1, Lhx1/Lim1, and Emx2.28,29,37,96-101 The 
knockout of several secreted signaling molecules, such as 
GDNF, GDF11, gremlin (Grem1), and the receptors Ret and 
GFRα1 (GDNF family receptor alpha1), also resulted in 
renal agenesis, at least in the majority of embryos.102-108

EARLY LINEAGE DETERMINATION OF  
THE METANEPHRIC MESENCHYME
In most embryos exhibiting renal agenesis, an appropriately 
localized putative MM is often uninvaded by a UB  
outgrowth. Two exceptions are the Osr1/Odd1 and Eya1 
mutant embryos, in which this distinct patch of MM  
is absent, suggesting that Osr1 and Eya1 represent the earli-
est determinants of the MM yet identified (Figure 1.12). 
Together, the phenotypes of these knockout mice have  
provided an initial molecular hierarchy of early kidney 
development.96,109 Osr1 is localized to mesenchymal cells 
within the mesonephric and metanephric kidney and is 
subsequently downregulated upon epithelial differentia-
tion. Mice lacking Osr1 do not form the MM and do not 
express several other factors required for metanephric 
kidney formation, including Eya1, Six2, Pax2, Sall1, and 
GDNF.109 Other factors implicated in the earliest stages of 
MM cell fate determination are the Eya1/Six1 pathway. Eya1 
and Six1 mutations are found in humans with branchioot-
orenal (BOR) syndrome.110 It is now known through in vitro 
experiments that the proteins Eya1 and Six1 form a regula-
tory complex that appears to be involved in transcriptional 
regulation.111,112 Interestingly, Eya1 was shown to have an 
intrinsic phosphatase activity that regulates the activation of 
the Eya1/Six1 complex.112,113 Moreover, Eya and Six family 
genes are co-expressed in several tissues in mammals, 
Xenopus, and Drosophila, further supporting a functional 
interaction between these genes.96,100,101,114,115 Direct tran-
scriptional targets of this complex appear to include the 
pro-proliferative factor c-Myc.112 In the Eya1-deficient 
urogenital ridge the putative MM is completely absent.116 
Consistent with this finding, Six1 is either absent or poorly 
expressed in the presumptive location of the MM of  
Eya1-null embryos.112,114–116 These findings may identify Eya1 
as a gene involved in early commitment of this group of cells 
to the metanephric lineage. Although Six1 and Eya1 may 
act in a complex together, the Six1 phenotype is somewhat 
different, in that a histologically distinct mesenchyme is 
present at 11.5 dpc, without an invading UB, similar to the 
other renal agenesis phenotypes.100,101 Eya1 is expressed in 
the Six1-null mesenchyme, suggesting that Eya1 is upstream 
of Six1. Additionally, Sall1 and Pax2 are not expressed 
in the Six1 mutant mesenchyme even though WT1 is 
expressed.100,101,116 There are discrepancies in the literature 
about Pax2 expression in Six1 mutant embryos, which may 
reflect the exact position along the anterior-posterior axis 
of the urogenital ridges of Six1 mutant embryos from which 
sections are obtained.

genomewide mutagenesis screens in zebrafish in order to 
study renal function.

The pronephros of the clawed frog Xenopus laevis has also 
been used as a simple model to study early events in nephro-
genesis. As in the fish, the pronephros consists of a single 
glomus, paired tubules, and a duct. The fact that X. laevis 
embryos develop rapidly outside the body (all major organ 
systems are formed by 6 days of age), the ease of injecting 
DNA, messenger RNA, and protein, and the ability to 
perform grafting and in vitro culture experiments establish 
the frog as a valuable model system for dissection of early 
inductive and patterning cues.92 In addition, insights emerg-
ing from the use of the chick embryo as a model for meso-
nephros development have highlighted the role of the Vg1/
Nodal signaling pathway in formation of the intermediate 
mesoderm as the embryonic source of all kidney tissue in 
vertebrates.93

GENETIC ANALYSIS OF MAMMALIAN 
KIDNEY DEVELOPMENT

Much has been learned about the molecular genetic basis 
of kidney development over the past 15 years. This under-
standing has been gained primarily through the phenotypic 
analysis of mice carrying targeted mutations that affect 
kidney development. Additional information has been 
gained by identification and study of genes expressed in the 
developing kidney, even though the targeted mutation, or 
knockout, either has not yet been performed or has not 
affected kidney development or function. This section cat-
egorizes the genetic defects on the basis of the major phe-
notype and stage of disrupted development. It must be 
emphasized that many genes are expressed at multiple 
points of renal development and may play pleiotropic roles 
that are not entirely clear.

INTERACTION OF THE URETERIC BUD AND  
THE METANEPHRIC MESENCHYME

The molecular analysis of the initiation of metanephric 
kidney development has included a series of classic experi-
ments using organ culture systems that allow separation of 
the UB and the MM as well as a later analysis of many gene-
targeted mice with phenotypes that included various degrees 
of renal agenesis. As previously mentioned, the organ 
culture system has been in use since the seminal experi-
ments, beginning in the 1950s, of Grobstein, Saxen, and 
their colleagues.27,94,95 These experiments showed that the 
induction of the mesenchymal-to-epithelial transformation 
within the MM required the presence of an inducing agent 
provided by the UB. The embryonic neural tube was found 
to be able to substitute for the epithelial bud, and experi-
ments involving the placement of the inducing agent on the 
opposite side of a porous filter from the mesenchyme pro-
vided information about the degree of contact required 
between them. A large series of experiments using organ 
cultures provided information about the timing of appear-
ance of different proteins normally observed during the 
induction of nephrons and about the intervals that were 
crucial in maintaining contact between the inducing agent 
and the mesenchyme to obtain induction of tubules.
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in the assembly of a histone H3, lysine 4 methyltansferase 
complex through the ubiquitously expressed nuclear factor 
PTIP (pax transcription activation domain interacting 
protein), which regulates histone methylation.132 The Hox 
genes are conserved in all metazoans and specify positional 
information along the body axis. Hox11 paralogs include 
Hoxa11, Hoxc11, and Hoxd11. Mice carrying mutations in 
any one of these genes do not have kidney abnormalities; 
however, triple-mutant mice for these genes demonstrate a 
complete absence of metanephric kidney induction.129 
Interestingly, in these mutants, the formation of condensing 
MM and the expressions of Eya1, Pax2, and WT1 remain 
unperturbed, suggesting that Hox11 is not upstream of these 
factors. Although there seems to be some hierarchy, Eya1, 
Pax2, and Hox11 appear to form a complex to coordinately 
regulate the expression of GDNF.133

Sall1 indirectly controls the expression of GDNF. Sall1 is 
necessary for the expression of the kinesin Kif26b by the 
MM cells.125 In the absence of either Sall1 or Kif26b, the 
nephronectin receptor α8β1-integrin expressed by the MM 
mesenchyme is downregulated. The loss of Sall1, Kif26b, 
α8β1-integrin, and nephronectin compromises the adhesion 
of the MM cells to the UB tips, ultimately causing loss  
of GDNF expression and failure of UB outgrowth.124,126,134, 
Loss of the extracellular matrix protein Fras1—the gene 
which is linked to Fraser’s syndrome and which is expressed 
selectively in the UB epithelium and nascent epithelialized 
nephrons but not the MM—causes loss of GDNF expres-
sion.122 Fras1 likely regulates MM induction and GDNF 
expression via multiple signaling pathways. Fras1 deficiency 
results in downregulation of GDF11, Hox11, Six2, and  

URETERIC BUD INDUCTION: TRANSCRIPTIONAL 
REGULATION OF GDNF
In many cases of renal agenesis, a failure of the GDNF-Ret 
signaling axis has been identified.117 GDNF, a member of 
the tumor growth factor-β (TGF-β) superfamily and secreted 
by the MM, activates the Ret-GFRα1 receptor complex that 
is expressed by cells of the nephric duct and the UB. Activa-
tion of the Ret tyrosine kinase is of central importance to 
UB induction. Most mutant embryos lacking Gdnf, Ret, or 
Gfrα1 exhibit partial or complete renal agenesis owing to 
severe impairment of UB induction, whereas exogenous 
GDNF is suffice to induce sprouting of ectopic buds  
from the nephric duct.103-106,118-121 Consistently, other genes 
linked to renal agenesis are known to regulate the normal 
expression of GDNF. These include genes encoding for 
transcription factors (e.g., Eya1, Pax2, Six1, Hox11 paralogs, 
and Sall1) and proteins required to stimulate or maintain 
GDNF expression (e.g., GDF11, Kif26b, nephronectin, α8β1-
integrin, and Fras1) (see Figure 1.12).96,99,101,102,122-130

As described earlier, Eya1 mutants fail to form the MM. 
Pax2, a transcriptional regulator of the paired box (Pax) 
gene family, is expressed widely during the development of 
both UB and mesenchymal components of the urogenital 
system.127 In Pax2-null embryos, Eya1, Six1, and Sal11 are 
expressed,116 suggesting that the Eya1/Six1 is likely upstream 
of Pax2. Through a combination of molecular and in vivo 
studies, it has been demonstrated that Pax2 appears to act 
as a transcriptional activator of GDNF and regulates the 
expression of Ret.128,131 Pax2 also appears to regulate kidney 
formation through epigenetic control because it is involved 

Figure 1.12  Genetic interactions during early 
metanephric kidney development. A, Regulatory 
interactions that control the strategically localized 
expression of GDNF (glial cell–derived neurotrophic 
factor) and Ret and the subsequent induction of the 
ureteric bud (UB). The anterior part of GDNF expres-
sion is restricted by Foxc1/2 and Slit/Robo2 signal-
ing. Spry1 suppresses the post-receptor activity of 
Ret. BMP4/7-BMPR (bone morphogenetic protein 
4/7–bone morphogenetic protein receptor) signaling 
inhibits the response to GDNF, an effect counter-
acted by gremlin 1 (Grem1). B and C, Genetic regu-
latory networks that control the expression of  
(B) GDNF and (C) Ret. MM, Metanephric mesen-
chyme; NC, nephrogenic cord; ND, nephric duct. 
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the nephric duct, which terminates into either blind-ended 
ureters or abnormal connections between the bladder and 
urethra.136 The curtailed caudal growth of the nephric duct 
when either Lhx1 or Gata3 is lost prevents the formation of 
the first UB and consequently causes renal agenesis.136,140,141 
The absence of Aldh1a2 leads to the formation of ectopic 
ureters and hydronephrotic kidneys.139 Emx2 deficiency does 
not prevent caudal extension of the nephric duct toward the 
presumptive MM, but the evagination of the UB is aborted, 
thereby resulting in renal agenesis.29 Without β-catenin, 
nephric duct cells undergo precocious differentiation into 
collecting duct epithelia.142 Ret does not affect the nephric 
duct fate but has importance in later UB development and 
insertion of the nephric duct into the cloaca.77,120,139 Identifi-
cation of additional targets of Pax2, Pax8, Lhx1, Gata3, and 
β-catenin are necessary in order to fully understand these 
seemingly disparate mutant phenotypes.

UB induction and subsequent branching require a unique 
spatial organization of Ret signaling. The bulbous UB tip is 
a region enriched with proliferative ureteric epithelial cells, 
in contrast to the emerging stalk regions of the developing 
ureteric tree.30,143 It is now well appreciated that receptor 
tyrosine kinase (RTK) signaling primarily through Ret is key 
to the proliferation of UB tip epithelia. Exogenous GDNF 
supplemented in explanted embryonic kidneys can cause 
expansion of the UB tip region toward the source of the 
ligand.143-145 Erk kinase activation is prominent within the 
ampullary UB terminals, where Ret expression is elevated.30 
Consistently, chimera analysis in mice reveals that Ret-
deficient cells do not contribute to the formation of the UB 
tips.120 All together, these studies underscore the impor-
tance of strategic levels of Ret expression and activation of 
proliferative signaling pathways in the stereotypical sculpt-
ing of the nascent collecting duct network.

A ligand-receptor complex formed by GDNF, GFRα1, and 
Ret is necessary for autophosphorylation of Ret on its intra-
cellular tyrosines (Figure 1.13). A number of downstream 
adaptor molecules and effectors have been identified to 
interact with active phosphorylated Ret, including the 
growth factor receptor–bound proteins Grb2, Grb7, and 
Grb10, ShcA, Frs2, phospholipase Cγ1 (PLCγ1), Shp2, Src, 
and Dok adaptor family members (Dok4/5/6).146-157 These 
downstream Ret effectors together are likely contributors to 
the activation of the Ras/SOS/Erk and PI3K/Akt pathways 
supporting the proliferation, survival, and migratory behav-
ior of the UB epithelium.30,32,158 Knock-in mutations of the 
interaction site for Shc/Frs2/Dok adaptors on the short 
isoform of Ret lead to the formation of rudimentary 
kidneys.159-162 Specific mutation of the PLCγ1 docking site on 
Ret leads to renal dysplasia and ureter duplications.159 The 
loss of Shp2 in the UB lineage also causes severe renal hypo-
plasia, phenocopying that is observed in occasional Ret-
deficient kidneys.163 UB-specific inactivation of Pten, a target 
of the PI3K/Akt pathway, disrupts UB branching.164 Taken 
together, these findings underscore the significance of Ret 
signaling in normal UB branching.

A number of transcriptional targets of Ret activation in 
microdissected UB stimulated with GDNF have been eluci-
dated (see Figure 1.13).76 Among these are Ret itself and 
Wnt11, which stimulates GDNF expression in the MM,165 
suggesting that a positive feedback loop exists for the GDNF-
Ret signaling pathway. Ret activation also positively regulates 

α8-integrin, and an increase in bone morphogenetic 
protein 4 (BMP4), which cooperatively controls GDNF 
expression.122

NON-GDNF PATHWAYS IN THE  
METANEPHRIC MESENCHYME
Another pathway in early development of the MM involves 
WT1 and vascular endothelial growth factor A (VEGF-A).49 
Induction of the UB does not occur in Wt1 mutants, 
although GDNF is expressed in the MM, indicating the 
existence of a GDNF-independent UB induction mecha-
nism.28 However, details of this pathway still remain to be 
clarified. A novel approach to the organ culture system 
involving microinjection and electroporation has also 
yielded insights as to a possible function of the Wt1 gene in 
early kidney development. Overexpression of WT1 from an 
expression construct led to high-level expression of VEGF-A. 
The target of VEGF-A appeared to be Flk1 (VEGF receptor 
2 [VEGFR2])–expressing angioblasts at the periphery of the 
mesenchyme. Blocking signaling through Flk1, if done 
when the metanephric rudiment was placed in culture, 
blocked expression of Pax2 and GDNF and, consequently, 
of the continued branching of the UB and induction of 
nephrons by the bud. Blockade of Flk1 after the organ had 
been in culture for 48 hours had no effect, indicating that 
the angioblast-derived signal was required to initiate kidney 
development but not to maintain continued development.49 
The signal provided by the angioblasts is not yet known, nor 
is it known whether WT1 is a direct transcriptional activator 
of VEGF-A. Flk1 signaling is also required to initiate hepa-
tocyte differentiation during liver development. Numerous 
targets of WT1 in nephron progenitors have been identified 
though chromatin immunoprecipitation, providing a com-
prehensive catalog of genes particularly enriched for func-
tions relating to transcription, multiorgan development, 
and cell cycle regulation. In addition, a number of these 
WT1 targets have special roles in remodeling of the actin 
cytoskeleton.38

GENES REQUIRED BY THE URETERIC BUD IN EARLY 
KIDNEY DEVELOPMENT
Several components of the genetic network supporting the 
development of the nephric duct and the UB have been 
identified (see Figure 1.12). Pax2 and Pax8 are required to 
maintain the expression of Lhx1.135 Pax2, Pax8, and Lhx1 
altogether likely coordinate the expression of Gata3, which 
is necessary for elongation of the nephric duct.136 Gata3 and 
Emx2, which are required for the expression of Ret in the 
nephric duct, are both regulated by β-catenin, an effector of 
the canonical Wnt signaling pathway (for a discussion of 
Wnt, see section “Molecular Analysis of the Nephrogenic 
Zone”).29,137,138 Acting likely in parallel with Gata3 to main-
tain Ret expression in the UB is Aldh1a2 (Raldh2), a gene in 
the retinoic acid synthesis pathway.139 Surprisingly, this 
genetic regulatory hierarchy cannot fully account for the 
distinctive phenotypes arising from the mutations of indi-
vidual genes, suggesting that additional important compo-
nents of the nephric duct genetic network have yet to be 
identified. Nephric duct specification fails in Pax2/Pax8 
mutants but not in the case of Lhx1 deficiency, in which only 
the caudal portion of the nephric duct degenerates.135 The 
absence of Gata3 or Raldh2 causes misguided elongation of 
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activation. Interestingly, Spry1 expression is distinctively 
upregulated upon GDNF activation of Ret.76 This finding 
suggests that Ret activates a negative feedback mechanism 
via Spry1 in order to control activated ERK levels and modu-
late cell proliferation in the UB. Studies on Spry1-knockout 
mice reveal some intriguing facets about Ret dependence 
of UB induction and branching.70,72,172-175 Spry1 deficiency 
leads to ectopic UB induction and can rescue renal develop-
ment in the absence of either GDNF or Ret.172,176 Germline 
inactivation of Spry2 does not overtly affect renal develop-
ment but can rescue renal hypoplasia in mice engineered 
to express Ret mutants impaired in activating the Ras/ERK 
pathway.171 The transcriptional targets of Ret, such as Etv4, 
Etv5 and Wnt11, are retained in Gdnf/Spry1 or Ret/Spry1 
compound null mutants.172,176 These findings indicate that 
Ret signaling is not absolutely required for UB develop-
ment. In fact, signaling via FGF10 and the receptor FGFR2 
is sufficient for renal development despite the absence of 
GDNF or Ret, provided that Spry1 is inactivated. Neverthe-
less, patterns of renal branching are distinctively altered in 
Gdnf/Spry1 and Gdnf/Ret compound mutants, with UB tips 

the ETS (E26 transformation-specific) transcription factors 
Etv4 and Etv5, which are also necessary for normal UB 
branching morphogenesis. Etv4-null homozygous mutants 
and compound heterozygous mutants for Etv4 and Etv5 
manifest severe renal hypoplasia or renal agenesis, suggest-
ing that these transcription factors are indispensable targets 
of Ret for proper UB development.76 In chimeric animals 
Etv4/Etv5-deficient cells, just like Ret-deficient cells, fail to 
integrate within the UB tip domain.120,166

The gene Sprouty was identified as a general antagonist of 
RTKs and was discovered for inhibiting the fibroplastic 
growth factor (FGF) and epidermal growth factor (EGF) 
signaling pathways that pattern the Drosophila airways, wings, 
and ovarian follicles.167-169 Of the four mammalian Sprouty 
homologs, Spry1, Spry2, and Spry4 are expressed in develop-
ing kidneys.170 Spry1 is expressed strongly at the UB tips, 
whereas Spry2 and Spry4 are found in both the UB and the 
MM.171 Sprouty molecules are thought to uncouple receptor 
tyrosine kinases with the activation of ERK pathway either 
through competitive binding with the Grb2/SOS complex 
or through the kinase Raf, effectively repressing ERK 

Figure 1.13  Ret signaling pathway. Ret is activated and becomes autophosphorylated on intracellular tyrosine residues (pY) upon associa-
tion with GDNF GDNF (glial cell–derived neurotrophic factor) and its receptor GFRα1. Signaling molecules such as Grb2, Shc, FRS2, PLCγ1, 
and Shp2 bind directly to the phosphorylated tyrosine residues within the intracellular domain of Ret. Recruitment of Shc, FRS2, and Grb2 
leads to activation of the ERK and PI3K/Akt pathways. GDNF-Ret signaling leads to the specific activation of a host of genes, some of which 
strongly depend on the upregulation of the transcription factors Etv4 and Etv5 (solid arrows). Etv4/Etv5 activation requires activation of the 
PI3K/Akt but not the ERK pathway. Transcription factors Sox8 and Sox9 are believed to act in parallel to reinforce transcriptional responses 
to GDNF-Ret engagement. Some of these pathways are shared with the FGF7/10-FGFR2 receptor signaling system. The proteins Spry1 and 
Spred2 negatively regulate ERK signaling, whereas Dusp6 likely mitigates dephosphorylation of the Ret receptor, thus acting as part of a nega-
tive feedback regulatory loop. Other distinctive transcriptional targets of Ret activation include Crlf1, Cxcr4, Mmp14, Myb and Wnt11. 
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integrin-based signaling. This fact is another example of 
how signaling through the extracellular matrix intersects 
with growth factor signaling to influence morphogenesis. 
The importance of basement membrane assembly in the 
development of other renal structures is emphasized by 
genetic studies on the genes Lama5 and Lamb2, which 
encode for laminins α5 and β2, respectively. Loss of Lama5 
causes either renal agenesis or disruption of glomerulogen-
esis, whereas deficiency of Lamb2 leads to a defective glo-
merular filtration barrier.186,187

The UB branching program is stereotypically organized 
so that the proliferative UB epithelial cells are largely  
confined to the bulbous UB tips but cell division is damp-
ened within the elongated nonbranching UB stalks of the 
growing ureteric tree. TROP2/Tacstd2, an adhesion mole-
cule related to epithelial cell adhesion molecule (EpCAM), 
is expressed prominently in the UB stalks, where it colocal-
izes with collagen-1.188 TROP2, unlike EpCAM, which is 
expressed throughout the UB tree, is not expressed at the 
UB ampullary tips. Consistently, dissociated and sorted UB 
cells expressing high levels of TROP2 are nonproliferative 
and express low levels of Ret, GFRα1, and Wnt11, which are 
notable UB tip markers. Elevated expression of TROP2 is 
also associated with poor attachment of epithelial cells to 
collagen matrix and with suppression of cell spreading and 
motility, thus emphasizing the importance of this adhesion 
molecule in negative regulation of UB branching and the 
sculpting of the nascent collecting duct network. The forma-
tion of patent lumens within epithelial tubules of the kidney 
also depends on coordinated cell adhesion. β1-integrin is 
tethered to the actin cytoskeleton via a ternary complex 
formed between integrin-like kinase (ILK) and parvin. ILK 
has been shown to be important in mediating cell cycle 
arrest and cell contact inhibition in the collecting duct epi-
thelia.189 The targeted ablation of Ilk expression in the UB 
does not cause remarkable defects in UB branching but 
does eventually lead to postnatal death due to obstruction 
of collecting ducts arising from dysregulated intraluminal 
cell proliferation. Thus, cell adhesion molecules may sup-
press cell division to regulate distinctive aspects of renal 
branching and tubulogenesis.

FORMATION OF THE COLLECTING SYSTEM

The overall shape, structure, and size of the kidneys are 
largely guided by the stereotypical branching of the UB and 
the subsequent patterning of the collecting duct system. 
During late gestation, past embryonic stage 15.5 dpc in the 
mouse, the trunks of the UB tree undergo extensive elonga-
tion to establish the array of collecting ducts found in the 
renal medulla and papilla. The radial arrangement of elon-
gated collecting ducts together with the loops of Henle 
(derived from the nephrogenic mesenchyme) establishes 
the corticomedullary axis by which nephron distributions 
are patterned. Further elongation of the newly formed col-
lecting duct network after birth is partly responsible for the 
postnatal growth of the kidney.

Elongation of the collecting ducts is regulated by  
oriented cell division, a process dependent on Wnt7b  
and Wnt9b.190-192 Oriented cell division is characterized 
by the parallel alignment of the mitotic spindle of proliferat-
ing ductal epithelia with the longitudinal axis of the duct. 

often displaying more heterogeneous shapes and orienta-
tion. These findings indicate that there remain some dis-
tinctive roles of GDNF-Ret signaling that cannot be fully 
compensated by FGF10/FGFR2 during UB development.

ADHESION PROTEINS IN EARLY  
KIDNEY DEVELOPMENT
A current theme in cell biology is that growth factor signal-
ing often occurs coordinately with signals from the extracel-
lular matrix transduced by adhesion receptors, such as 
members of the integrin family. α8β1-integrin is expressed 
by cells of the MM interacting with the novel ligand neph-
ronectin expressed specifically by UB cells.124,177 In most 
embryos with mutations causing absence of α8-integrin, UB 
outgrowth is arrested upon contact with the MM.124 In a 
small portion of embryos, this block is overcome, and a 
single, usually hypoplastic, kidney develops. Nephronectin 
gene (Npnt) knockout mice exhibit renal agenesis or severe 
hypoplasia.126 Thus, the interaction of α8β1-integrin with 
nephronectin must have an important role in the continued 
growth of the UB toward the MM. Phenotypes of both Itga8 
and Npnt knockout mice appear to result from a reduction 
in GDNF expression.126 The attraction of the UB to the 
mesenchyme is also governed by the maintenance of proper 
cell-cell adhesion within mesenchymal cells. Kif26b, a 
kinesin specifically expressed in the MM, is important for 
tight condensation of mesenchymal cells.125 Genetic inacti-
vation of Kif26b results in renal agenesis due to impaired 
UB induction. In Kif26b mutant mice, the compact aggrega-
tion of mesenchymal cells is compromised, resulting in dis-
tinctive loss of polarized expression of α8-integrin and severe 
downregulation of GDNF expression. Hence, dysregulation 
of mesenchymal cell adhesion causes the failure to attract 
and induce the ureteric epithelia.

Genetic evidence further shows that nephronectin local-
ization at the basement membrane of the UB is critical for 
GDNF expression by the MM. Genetic inactivation of base-
ment membrane proteins associated with Fraser’s syndrome 
(Fras1, Frem1/Qbrick, and Frem2) leads to renal agenesis 
characterized by severe downregulation of GDNF expres-
sion.122,123,178-181 On the basis of interaction of nephronectin 
with Fras1, Frem1/Qbrick, and Frem2, it has been proposed 
that the Fras1/Frem1/Frem2 ternary complex anchors 
nephronectin to the UB basement membrane, thus stabiliz-
ing engagement with α8β1-integrin expressed by the MM 
(Figure 1.14).179 Grip1, a PDZ domain protein known to 
interact with Fras1, is required to localize the Fras1/Frem1/
Frem2 complex on the basal aspect of the UB epithelium.182 
Grip1 mutations phenocopy Fraser’s syndrome, including 
renal agenesis, thus further highlighting the importance of 
the strategic localization of nephronectin on the UB surface 
toward the opposing MM.182-184

The establishment of epithelial basement membranes 
during metanephric kidney development involves the stage-
specific assembly of different laminin α and β subunits with 
a common laminin γ1 subunit. The UB-specific inactivation 
of the gene Lamc1, which encodes for laminin γ1, leads to 
impaired UB induction and branching, ultimately causing 
either renal agenesis or hypomorphic kidneys with water 
transport deficits.185 Lamc1 deficiency prevents formation of 
basement membranes, causing downregulation of both 
growth factor (GDNF/Ret, Wnt11, and FGF2)–based and 
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β-catenin–dependent Wnt signaling pathway. Wnt9b, 
another ligand expressed along the UB trunk region, has 
been identified as required for oriented cell division in col-
lecting duct cells. In contrast, Wnt9b signals through a non-
canonical Wnt pathway involving the activation of the small 
guanosine triphosphatase (GTPase) RhoA and the kinase 
Jnk.191 Another mechanism that could contribute to elonga-
tion of the collecting ducts is convergent extension. Conver-
gent extension involves the coordinated intercalation of 
elongated epithelial cells that thereby narrows and effec-
tively lengthens the ducts. This mechanism was proposed on 
the basis of the reconfigured orientation of elongated cells 
in Wnt9b mutant collecting ducts.191 How the interstitial 
stroma signals back to the UB to modulate oriented cell divi-
sion and convergent-extension remains unknown.

Oriented cytokinesis, therefore, guarantees that the daugh-
ter cells contribute to lengthening of the duct with minimal 
effect on tubular lumen diameter. The renal medulla and 
pelvis are nonexistent in mice lacking Wnt7b.190 Notably, the 
collecting ducts and loops of Henle are stubbier, likely 
through disruption of oriented cell division. Wnt7b expres-
sion is restricted within the UB trunks and is absent in the 
ampullary UB tips. Oriented cell division of the collecting 
duct epithelia therefore requires reciprocal signaling with 
the surrounding interstitial stromal mesenchyme. Condi-
tional inactivation of Cttnb1 (β-catenin) using a Tcf21-Cre 
transgene (which is expressed in the interstitial stroma) 
results in hypoplastic kidneys lacking medullary and papil-
lary regions.193 This is consistent with the possibility that the 
UB-stromal interaction via Wnt7b activates the canonical 

Figure 1.14  Molecular model of renal defect in Fraser’s syndrome. A, Adhesion to the ureteric bud (UB) epithelium positively regulates 
the expression of glial cell–derived neurotrophic factor (GDNF) by the metanephric mesenchyme (MM). Adhesion and GDNF expression are 
impaired in the absence of (B) nephronectin (expressed by the UB), (C) α8β1 integrin (expressed by the MM), (D) or the Fras1/Frem1/Frem2 
complex. Fras1, Frem1, and Frem2, which are implicated in Fraser’s syndrome, are believed to coordinatedly anchor nephronectin to the UB 
basement membrane and stabilize the conjugation with α8β1 integrin. (Modified from Kiyosumi D, Takeichi M, Nakano I, et al: Basement membrane 
assembly of the integrin α8β1 ligand nephronectin requires Fraser syndrome-associated proteins. J Cell Biol 197:677-689, 2012.)
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epithelia later in gestation, and its inactivation in mice 
causes complete aplasia of the renal medulla and papillae. 
However, the ligand of Esrrg remains to be identified, and 
little is known about its downstream targets.

POSITIONING OF THE URETERIC BUD

A crucial aspect of kidney development that is of great rel-
evance to renal and urologic congenital defects in humans 
relates to the positioning of the UB (see Figure 1.12A). 
Incorrect positioning or duplication of the bud leads to 
abnormally shaped kidneys and incorrect insertion of the 
ureter into the bladder, with resultant ureteral reflux that 
can predispose to infection and scarring of the kidneys and 
urologic tract.

Foxc1 (Forkhead box C1) is a transcription factor of the 
Forkhead family, expressed in the intermediate mesoderm 
and the MM adjacent to the wolffian duct. In the absence 
of Foxc1, the expression of GDNF adjacent to the wolffian 
duct is less restricted than in wild-type embryos. Foxc1 defi-
ciency results in ectopic UBs, hypoplastic kidneys, and 
duplicated ureters.214 Additional molecules that regulate the 
location of UB outgrowth are Slit2 and Robo2, signaling 
molecules best known for their role in axon guidance in the 
developing nervous system. Slit2 is a secreted factor, and 
Robo2 is its cognate receptor. Slit2 is mainly expressed in 
the Wolffian duct, whereas Robo2 is expressed in the mes-
enchyme.215 In one study, UBs formed ectopically in embryos 
deficient in either Slit2 or Robo2 similar to those in the 
Foxc1 mutant. However, in contrast to the Foxc1 phenotype, 
ureters in the Slit2/Robo2 mutants undergo remodeling 
allowing their insertion into the bladder.215 Instead, the 
ureters remained connected to the nephric duct in Slit2 or 
Robo2 mutants. The domain of GDNF expression is expanded 
anteriorly in the absence of either Slit2 or Robo2. Indeed, 
mutations in Robo2 have been identified in patients with 
vesicoureteral junction defects and vesicoureteral reflux.216 
The expressions of Pax2, Eya1, and Foxc1, all thought to 
regulate GDNF expression, were not dramatically different 
in the absence of Slit2 or Robo2, suggesting that Slit/Robo 
signaling is not upstream of these genes. It is possible that 
Slit/Robo signaling is regulating the point of UB initiation 
by regulating the GDNF expression domain downstream  
of Pax2 or Eya1. An alternative explanation is that Slit2 
and Robo2 act independently of GDNF and that the 
expanded GDNF domain is a response to rather than a 
cause of ectopic UBs.

Spry1, as described earlier, negatively regulates the Ras/
Erk signaling pathway and is expressed strongly in the pos-
terior wolffian duct and the UB tips.217 Embryos lacking 
Spry1 develop supernumerary UBs, but unlike mutants of 
Foxc1, Slit2, or Robo2, they do not display changes in GDNF 
expression.173 The phenotype of Spry1 mutants can be 
rescued by reducing the GDNF expression dosage.173 Spry1 
deletion also rescues the renal agenesis defect in mice 
lacking either Ret or GDNF.172 Consistently, renal agenesis 
and severe renal hypoplasia, in mice expressing Ret specifi-
cally mutated on a tyrosine phosphorylation site known to 
couple with the Ras/ERK pathway, can be reversed in the 
absence of Spry1.176 Thus, Spry1 appears to regulate UB 
induction site by dampening RTK-dependent proliferative 
signaling.

The normal development of the collecting ducts also 
depends on cell survival cues provided by diverse ligands 
such as Wnt7b, EGF, and hepatocyte growth factor (HGF) 
and on interactions with the extracellular matrix.190,194,195 
Papillary collecting ducts display higher incidence of apop-
tosis in mice lacking Wnt7b or EGF receptor (EGFR).190,194 
Conversely, loss of Dkk1 (Dickkopf1), a secreted antagonist 
of Wnt7b, results in overgrowth of the renal papilla.196 Con-
ditional inactivation of Dkk1 using the Pax8-Cre transgene 
(expressed in renal tubules and the collecting ducts) causes 
increased proliferation of papillary epithelial cells. The 
HGF receptor Met, α3β1-integrin (Itga3/Itgb1), and laminin 
α5 (Lama5) are all required to maintain the expression of 
Wnt7b and thus are likely to support the viability of collect-
ing duct cells.134,195,197

Poor development of the renal medulla and papilla are 
also observed in mutant mice lacking FGF7, FGF10, FGFR2, 
BMPR1A (ALK3), the components of the renin angiotensin 
aldosterone system (RAAS), Shh (Sonic hedgehog), or the 
orphan nuclear steroid hormone receptor Esrrg. FGF7 and 
FGF10 are the cognate ligands of FGFR2. Renal hypoplasia 
observed when Fgfr2 is conditionally removed from the ure-
teric lineage is more severe than in mutants lacking Fgf7 or 
Fgf10, suggesting that these related ligands may have some 
functional redundancy in the development of the UB and 
collecting ducts.69,198,199 Kidneys lacking Bmp1ra show an 
attenuated phosphorylation of SMAD1, an effector of the 
BMP and TGFβ ligands, and a concomitant increase in 
expression of c-Myc and β-catenin.200 Although the signifi-
cance of these results are not clear, the elevation of β-catenin 
indicates a novel crosstalk between BMP and Wnt signaling 
pathways in collecting ducts. Signaling through angiotensin 
is relevant to both early UB branching and the morphogen-
esis of medullary collecting ducts.201 Genetic inactivation 
of angiotensinogen, its processing enzyme angiotensin-
converting enzyme (ACE), and its target angiotensin-II 
AT1R receptors (Agtr1a and Agtr1b) results in similar phe-
notypes characterized by hypoplastic kidneys with modestly 
sized renal papillae.202-207 Furthermore, the postnatal growth 
and survival of renal papilla grown ex vivo depend on the 
presence of AT1R.208 Interestingly, in cultures of renal 
papilla explants, angiotensin appears to regulate the Wnt7b, 
FGF7, and α3β1-integrin signaling pathways such that the 
loss of endogenous angiotensin or pharmacologic inhibi-
tion of AT1R causes significant dampening of the expres-
sion of Wnt7b, Fgf7, Cttnb1, and Itga3/Itgb1.208 Shh is expressed 
in the more distal derivatives of the UB, the medullary col-
lecting ducts and the ureter.209 The germline deletion of Shh 
results in either bilateral renal agenesis or a single ectopic 
dysplastic kidney.210,211 It has been shown that Shh controls 
the expression of early inductive and patterning genes 
(Pax2 and Sall1), cell cycle regulators (N-myc and cyclin 
D1), and signaling effectors of the Hedgehog pathway (Gli1 
and Gli2). Interestingly, genetic removal of Gli3 on an Shh-
null background restores the expression of Pax2, Sall1, cyclin 
D1, N-Myc, Gli1, and Gli2, providing physiologic proof 
for the role of Gli3 as a repressor of the Shh pathway in 
renal development.211 Frameshift mutations resulting in 
truncation of the expressed Gli3 protein is linked to Pallister-
Hall syndrome and the presence of hydronephrosis and 
hydroureter in both humans and mice.212,213 Esrrg has a 
strong and localized expression within collecting duct 
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Wnt4 likely bind distinctive receptor complexes, with Wnt4 
acting downstream of Wnt9b. Thus, a model has been pro-
posed whereby Wnt9b acts as a paracrine factor, priming the 
MM to develop into renal vesicles expressing Wnt4. Wnt4 in 
this model functions as an autocrine factor required for 
commitment to a tubulogenesis program (Figure 1.15).

Two major Wnt signaling branches exist downstream of 
the Frizzled receptor (Fz): a canonical β-catenin–depen-
dent pathway and a noncanonical β-catenin–independent 
pathway.222 In the canonical pathway, Wnt-mediated signal-
ing suppresses a phosphorylation-triggered pathway of  
proteosomal degradation, enabling the stabilization of 
β-catenin, which results in the formation of a complex 
between β-catenin and TCF/LEF (T-cell factor/lymphoid-
enhancing factor) DNA-binding proteins that directly regu-
lates transcriptional targets. Numerous studies demonstrate 
the importance of the canonical Wnt pathway for renal 
development: Conditional deletion of β-catenin from the 
cap mesenchyme completely blocks renal vesicle formation 
as well as expression of markers of induction such as Wnt4, 

Another negative regulator of branching is BMP4, which 
is expressed in the mesenchyme surrounding the wolffian 
duct. Bmp4 heterozygous mutants have duplicated ureters, 
and in organ culture, BMP4 blocks the induction of ectopic 
UBs by GDNF-soaked beads.218 Furthermore, knockout of 
gremlin, a secreted BMP inhibitor, causes renal agenesis, 
supporting a role for BMP in the suppression of UB 
formation.219

MOLECULAR ANALYSIS OF  
THE NEPHROGENIC ZONE

The continued replenishment of the reservoir of nephron 
progenitors during kidney development is crucial to  
guarantee generation of a sufficient number of nephrons. 
Fate mapping studies in mice using Cre driven by Cited1 
and Six2 promoters demonstrate that the condensed 
mesenchyme, which aggregates around the UB, represents 
a pool of multipotent progenitors that replenishes itself  
and differentiates to give rise to all epithelial components 
of the nephron from podocytes to distal tubules.18,19 
Signaling through Wnt, FGF, and the BMP family of  
ligands is critical to maintain the delicate balance between 
progenitor self-renewal and differentiation toward a neph-
rogenic fate.

Wnt11 and Wnt9b, two ligands belonging to the Wnt 
family of signaling molecules, are expressed by the UB. The 
Wnt family was originally discovered as the wingless muta-
tion in Drosophila and, in mammals, as genes found at retro-
viral integration sites in mammary tumors in mice. Wnt11 
is highly expressed at the UB tips and decreased branching 
occurs in its absence, although it has no known specific 
effect on the induction of the epithelial transformation of 
the MM.165 Wnt11 is a downstream target of Ret and is neces-
sary to sustain GDNF expression in the MM.76,144,145,165 Hence, 
Wnt11 participates in an autoregulatory feedback loop that 
maintains GDNF-Ret signaling to promote UB branching.165 
In contrast, Wnt9b, which is expressed in the entire UB 
except the very tips, appears to be the vital molecule 
expressed by the UB that induces the MM.220 Wnt9b is not 
essential for the early induction of the UB or for the initial 
condensation of the MM. Further UB branching fails beyond 
the initial branching step resulting in T-shaped tubule 
(T-stage), however, likely because of downregulation of 
GDNF in the MM. The MM condenses up to the T-stage but 
the expressions of Pax2, Eya1, WT1, Bmp7, and Six2 are 
distinctively diminished by 12.5 dpc in Wnt9b mutant mouse 
embryos. This loss of MM markers leads to failed induction 
of renal vesicles and tubulogenesis. Thus, Wnt9b is the 
closest candidate identified to date, which is likely to be the 
crucial molecule produced by the bud that stimulates induc-
tion of the nephrons.

A third member of the Wnt family, Wnt4, is expressed in 
pretubular aggregates and is additionally required for the 
epithelial transformation of the MM.220,221 In Wnt4 mutant 
embryos, pretubular aggregates failed to epithelialize into 
the tubular precursor of the mature nephron.221 Wnt9b-
deficient MM could be sufficiently induced in vitro to 
undergo tubulogenesis when grown with Wnt4-expressing 
fibroblasts.220 In contrast, another study using the same 
co-culture assay showed that Wnt9b could not compensate 
for the loss of Wnt4. These findings suggest that Wnt9b and 

Figure 1.15  Tripartite inductive interactions regulating ureteric 
branching and nephrogenesis. Six2 and Cited1 are expressed in 
the self-renewing nephron progenitors within the cap mesenchyme 
(CM) surrounding the ureteric bud (UB). The UB tip domains express 
high levels of Ret, which is activated by glial cell–derived neurotrophic 
factor (GDNF) from the surrounding CM. Wnt11 is upregulated in 
response to Ret activation and stimulates GDNF synthesis in the CM. 
Wnt9b, expressed by the UB, and Fat4, expressed by the Foxd1-
positive stroma, are required to initiate nephrogenesis from a subset 
of the CM. This results in the formation of a transient renal vesicle 
(RV) expressing FGF8 and Wnt4, factors that sustain epithelialization. 
The stroma expresses Aldh1a2, a gene required for retinoic acid 
synthesis, and genes for the retinoic acid receptors Rara and Rarb2. 
Retinoic acid signaling stimulates elevated expression of Ret in the 
UB tip domain while also suppressing Ret expression via Rara/Rarb2 
and Ecm1 in the stroma to initiate bifurcation of the UB tip to generate 
new branches. Foxd1 in the cortical stroma also represses Dcn, thus 
relieving the Dcn-mediated suppression of BMP7-dependent signal-
ing, which results in phosphorylation of SMAD1/5/8 (pSMAD1/5/8) 
and epithelialization of the cap mesenchyme. Wnt7b expressed in the 
UB stalk signals to the interstitial stroma and is an important factor 
that regulates cortico-medullary patterning of the kidney. 
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signaling, Six2 constitutively represses expression of renal 
vesicle markers within nephron progenitors.223 In response 
to Wnt induction, Six2 forms a complex with β-catenin and 
Lef/Tcf factors that regulate the expression of multiple 
genes required to coordinate mesenchyme-to-epithelial 
transition, including the upregulation of Pax8, Fgf8, Wnt4, 
and Lhx1 and the attenuation of Six2 expression. A fine-
tuned activity of Six2 is therefore required to balance the 
maintenance of a pool of self-renewing nephron progeni-
tors and to prime these progenitors for commitment to an 
epithelial fate via a canonical Wnt-dependent pathway.

The multidomain scaffolding proteins Dlg1 and CASK, 
members of the MAGUK (membrane-associated guanylate 
kinase) family of proteins, have been shown to be important 
in maintenance of nephron progenitor cells.236 Dlg1 and 
CASK prominently localize at the plasma membranes of 
polarized cells, where they coordinate cell junction forma-
tion and assembly of protein complexes that regulate cell 
polarity.237 In neurons, they are known to be important for 
organization of synapses.238 The global deletion of Dlg1 and 
Cask in mice led to severe renal hypoplasia and dysplasia 
with notable loss of the nephrogenic zone.236 This renal 
phenotype was fully recapitulated when Dlg1 and Cask were 
removed conditionally using either Pax3-Cre or Six2-Cre, 
suggesting that the defects are inherent within the MM 
compartment, particularly the nephrogenic precursors. 
Although UB branching was also decreased in the global 
and MM double-knockout mice, this defect proved to be 
secondary to depletion of the nephrogenic zone, because 
targeted ablation of Dlg1 and Cask in the ureteric lineage 
using HoxB7-Cre did not cause renal hypoplasia or abnor-
mal renal histology. Significantly diminished cell prolifera-
tion and increased apoptosis were observed in the 
nephrogenic zone in the absence of Dlg1 and Cask. Consis-
tent with the loss of the nephrogenic zone is the decreased 
expression of BMP7, Cited1, Six2, and FGF8. GDNF expres-
sion is also notably decreased, a finding that could explain 
the secondary impairment in ureteric branching. The con-
comitant reduction in BMP7 and FGF8 levels correlates with 
the dampening of signaling events downstream of Ras, 
including Erk, Jnk, and p38 MAPK pathways, possibly 
accounting for the loss of cell proliferation in the nephro-
genic zone of Dlg1/Cask double-knockout mice.

The extracellular cues regulating Dlg1 and CASK func-
tions in the nephrogenic mesenchyme are not yet clear. One 
possibility invoked is the interaction between Dlg1 and 
CASK with the FGF pathway via syndecan-2.237 FGF2 is 
known to mediate condensation of the MM, whereas FGF8 
is important for transition to Wnt4-expressing pretubular 
aggregates and renal vesicles.215,239 FGF9 and FGF20, on the 
other hand, are important to maintain the stemness of 
nephron progenitors.230 The corresponding receptors, 
FGFR1 and FGFR2, are crucial for the survival of the MM 
without which renal agenesis ensues.240 Dlg1 and CASK are 
also likely to mitigate the proper migration and condensa-
tion of the nephron precursors around the UB. In com-
pound heterozygous/homozygous Dlg1/Cask knockout 
subjects, kidneys were only modestly hypoplastic but showed 
a distinctively loose aggregation of Six2-expressing condens-
ing mesenchyme.236 This result is consistent with those of 
other studies showing that Dlg1 is important for directed 
cell migration of Schwann cells.241,242

Fgf8, and Pax8.223 By contrast, activation of stabilized 
β-catenin in the same cell population causes ectopic expres-
sion of mesenchymal induction markers in vitro and  
functionally rescues the defects observed in Wnt4- or Wnt9b-
deficient mesenchymes. Inhibition of the kinase GSK3, a 
member of the β-catenin degradation complex, results in 
the ectopic differentiation of the MM.224

BMP7 is expressed in the UB and in the condensed 
MM.225,226 Loss of BMP7 causes untimely depletion of the 
cap mesenchyme and nephrogenesis arrest.225,226 BMP7 is 
thought to be a survival and proliferative factor for the cap 
mesenchyme, on the basis of organ culture experiments and 
the increased incidence of apoptosis observed within the 
presumptive nephrogenic zone of Bmp7-null kidneys.226-229 
The proliferative effect of BMP7 on nephron progenitors 
has been shown to depend on specific activation of the 
kinase Jnk leading to phosphorylation and activation of Jun 
and Atf2.230 However, the cell-survival promoting functions 
of BMP7 are unlikely specific since BMP4 can functionally 
substitute for loss of BMP7 (based on phenotypic rescue in 
“knocked-in” mutants where Bmp4 cDNA was inserted next 
to the endogenous Bmp7 promoter).231 The exact role of 
BMP4 in nephrogenesis is not known, although it has been 
described as important specifically within the UB lineage.218 
The transcription factor Trps1, an atypical member of the 
GATA family of transcription factors implicated in trichorhi-
nophalangeal (TRP) syndrome, has been identified as a 
novel target of BMP7.232 Trps1 expression is absent in Bmp7-
null kidneys. Trps1-null mutant kidneys are hypoplastic and 
distinctively lacking glomeruli and renal tubules. Renal 
vesicle formation is distinctively compromised in the absence 
of Trps1, with a concomitant depletion of the cap mesen-
chyme. In cultured MM cells, the increased expression of 
E-cadherin following BMP7 stimulation is inhibited upon 
RNA interference–mediated knockdown of Trps1. Alto-
gether these studies suggest that BMP7 acting through 
Trps1 is important for epithelialization of the cap 
mesenchyme.

The more primitive progenitors within the condensed 
mesenchyme express high levels of Cited1 and proliferate 
in a BMP7-dependent manner.233 In response to BMP7, 
these Cited1-positive cells begin expressing Six2 and acquire 
responsiveness to Wnt9b. The exact role of Cited1 in the 
condensing mesenchyme remains poorly understood 
because Cited1- and compound Cited1/Cited2-knockout 
kidneys have apparently intact mesenchyme-to-epithelial 
transitions. It is not clear, however, whether the closely 
related Cited4 is upregulated and functionally compensates 
in the absence of Cited1 and Cited2.234 Genetic inactivation 
of Six2 causes premature and ectopic nephrogenesis.19,235 
The precocious epithelialization combined with increased 
incidence of apoptosis in Six2-deficient cap mesenchyme 
rapidly depletes the pool of nephrogenic precursors. The 
defective maintenance of nephrogenic precursors impairs 
reciprocal inductive interactions between the cap mesen-
chyme and the UB, causing overall stunting of kidney 
growth. Overexpression of Six2, on the other hand, pre-
vented epithelial differentiation of the cap mesenchyme. 
Six2, therefore, is required to maintain the undifferenti-
ated, self-renewing progenitor states of nephron precursors.  
Nevertheless, epithelialization in Six2-null mutants remains 
dependent on Wnt9b induction.19 In the absence of Wnt 
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findings further reiterate the crucial importance of canoni-
cal Notch signaling via Rbpj in the specification of the proxi-
mal segment of nephrons and the likelihood that Notch 
signaling independent of Rbpj arbitrates the determination 
of podocyte fate. Consistently, overexpression of the consti-
tutively active Notch1 intracellular domain (N1ICD) drives 
the acquisition of proximal tubule fate in nephron precur-
sors but inhibits the development of podocytes.248

The specification of the distal nephron fate requires the 
POU domain–containing transcription factor Pou3f3 (Brn1) 
and the metalloprotease genes Adamts1 and Adamts4.250,251 
The proneural basic helix-loop-helix (bHLH) factor Ascl1 
(MASH1) binds cooperatively with Pou3f3 and the related 
Pou3f2 (Brn2) to the promoter of the Notch ligand Delta1 
to synergistically activate the transcription of Delta1 and 
stimulate neurogenesis.252 Whether Pou3f3 is involved in 
regulation of Notch signaling in renal development is not 
clear. Germline deletion of Pou3f3 results in defective pat-
terning of the distal nephron segments.251 Pou3f3 expression 
is first detectable in renal vesicles and becomes localized to 
the distal aspects of the comma- and S-shaped bodies, regions 
destined to become the distal convoluted tubules, the macula 
densa, and the loop of Henle. Without Pou3f3, elongation 
of prospective loop of Henle and overall maturation of distal 
nephron segments are arrested. Although the development 
of glomeruli, proximal tubules, and collecting ducts is seem-
ingly not affected by the absence of Pou3f3, the severity of 
the distal nephron abnormalities causes renal insufficiency 
and perinatal death. The products of Adamts1 and Adamts4 
are secreted thrombospondin domain–containing metallo-
proteases known to cleave a class of proteoglycans called 
lecticans. Null mutation of Adamts1 in mice leads to hydrone-
phrosis and is characterized by the thinning of the renal 
medulla and a distinctive paucity in the loops of Henle.250,253 
Lack of Adamts4 appears benign but can exacerbate the sim-
plification of the renal medulla due to loss of Adamts1.254 As 
a consequence, mice with a compound null mutation of 
Adamts1 and Adamts4 mostly perish perinatally. This finding 
suggests that Adamts1 and Adamts4 have overlapping impor-
tance in the development of the distal nephron segment by 
a mechanism yet to be identified.

There is one example so far of a transcription factor 
involved in the differentiation of a specific cell type in the 
kidney. The phenotype is actually found in the collecting 
ducts, rather than in the nephron itself, but is discussed in 
this section because it is demonstrative of the kinds of phe-
notypes expected to be found as additional mutant mice are 
examined. Two cell types are normally found in the collect-
ing ducts—principal cells, which mediate water and salt 
reabsorption, and intercalated cells, which mediate acid-
base transport. In the absence of the Foxi1 transcription 
factor, only one cell type is present in collecting ducts, and 
many acid-base transport proteins normally expressed by 
intercalated cells are absent.255

In addition to cell differentiation, spatial orientation of 
cells is essential for tubule elongation and morphogenesis. 
In epithelia, cells are uniformly organized along an apical-
basal plane of polarity. However, in addition, cells in most 
tissues require positional information in the plane perpen-
dicular to the apical-basal axis. This type of polarization, 
referred to as planar cell polarity, is critical for morphogenesis 
of metazoans.256,257 A study using cell lineage analysis and 

MOLECULAR BIOLOGY OF NEPHRON 
DEVELOPMENT: TUBULOGENESIS

Gene targeting and other analyses have identified many 
genes involved in the initial induction of the metanephric 
kidney and the formation of the pretubular aggregate, but 
much less is currently known about how the pretubular 
aggregate develops into a mature nephron, a process 
through which a simple tubule elongates, convolutes, and 
differentiates into multiple distinct segments with different 
functions. Discussions of how this segmentation occurs have 
considered whether similarities will be found to other 
aspects of development, such as the limb or neural tube, 
where there is segmentation along various axes.

The Notch group of signaling molecules has been impli-
cated in directing segmentation of the nephron. Notch 
family members are transmembrane proteins, the cytoplas-
mic domains of which are cleaved by the γ-secretase enzyme 
upon the interaction of the extracellular domain with trans-
membrane ligand proteins of the Delta and Jagged families, 
found on adjacent cells.243 Thus, Notch signaling occurs 
between adjacent cells, in contrast to signaling by secreted 
growth factors, which may occur at a distance from the 
growth factor–expressing cells. The cleaved portion of the 
Notch cytoplasmic domain translocates to the nucleus, 
where it has a role in directing gene expression. Mice homo-
zygous for a hypomorphic allele of Notch2 have abnormal 
glomeruli, with a failure to form a mature capillary tuft.244,245 
Because null mutants of Notch family members usually 
result in early embryonic death, further analysis of Notch 
family function in kidney development has made use of the 
organ culture model.

When metanephric rudiments were cultured in the pres-
ence of a γ-secretase inhibitor,31,246 expression of podocyte 
and proximal tubule markers was diminished in comparison 
with expression of distal tubule markers and branching of 
the UB. When the γ-secretase inhibitor was removed, there 
seemed to be a better recovery of expression of proximal 
tubule markers than of podocyte differentiation markers. 
Similar results were observed in mice carrying targeted 
mutation of the Psen1 and Psen2 genes that encode a com-
ponent of the γ-secretase complex.247 Conditional deletion 
of Notch2 in the MM resulted in hypoplastic kidneys that did 
not develop glomeruli and proximal tubules, despite the 
presence of distal tubules and collecting ducts. Interestingly, 
the condensed mesenchyme and pretubular aggregates ini-
tiated epithelialization expressing Pax2 and E-cadherin but 
did not proceed to form S-shaped bodies. By contrast, 
Notch1-deficient metanephroi are phenotypically wild type, 
suggesting that Notch1 is not critical for cell fate determina-
tion during early nephron formation. Taken together, these 
studies seem to indicate that local activation of Notch2 
during tubule morphogenesis is critical to determining the 
proximal cell fate after the epithelialization of renal 
vesicle.248 The transcription factor Rbpj, the homolog of the 
Drosophila gene Suppressor of Hairless, is a transducer of 
canonical Notch signaling. Genetic inactivation of Rbpj in 
the MM leads to pronounced renal hypoplasia character-
ized by significant paucity in nephrons and the develop-
ment of tubular cysts.248,249 Fate mapping analyses reveal that 
Rbpj-deficient nephrogenic precursors develop into podo-
cytes and distal tubules but not proximal tubules.249 These 
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decorin and collagen IV are upregulated in the cortical 
interstitium. These findings are corroborated by the partial 
rescue of the Foxd1-null phenotype through genetic inacti-
vation of Dcn.

Tcf21 (also called Pod1) is expressed in the medullary 
stroma as well as in the condensing MM.264,265 Tcf21 is also 
expressed in a number of differentiated renal cell types that 
derive from these mesenchymal cells and include develop-
ing and mature podocytes of the renal glomerulus, cortical 
and medullary peritubular interstitial cells, pericytes sur-
rounding small renal vessels, and adventitial cells surround-
ing larger blood vessels (see Figure 1.6).193 The defect in 
nephrogenesis observed in Tcf21-null mice is similar to the 
defect seen in Foxd1-knockout mice, consisting of disruption 
of branching morphogenesis with associated arrest and 
delay in nephrogenesis. Analysis of chimeric mice derived 
from Tcf21 mutant embryonic stem cells and EGFP-
expressing embryos demonstrated both cell-autonomous 
and non–cell-autonomous roles for Tcf21 in nephrogene-
sis.269 Most strikingly, the glomerulogenesis defect was 
rescued by the presence of wild-type stromal cells (i.e., 
mutant cells will epithelialize and form nephrons normally 
as long as they are surrounded by wild-type stromal cells). 
In addition, there is a cell-autonomous requirement for 
Tcf21 in stromal mesenchymal cells to allow differentiation 
into interstitial and pericyte cell lineages of the cortex and 
medulla, because Tcf21-null ES cells were unable to contrib-
ute to these populations.

Although many of the defects in the Tcf21 mutant kidneys 
phenocopy those seen in the Foxd1 mutant kidneys, there 
are important differences. Kidneys from Tcf21-null mice 
have vascular anomalies and defective pericyte differentia-
tion that were not reported in Foxd1 mutant mice. These 
differences might result from the broader domain of Tcf21 
expression, which includes the condensing mesenchyme, 
podocytes, and medullary stromal cells in addition to the 
stromal cells that surround the condensates. In contrast to 
Foxd1, Tcf21 is not highly expressed in the thin rim of 
stromal cells found immediately beneath the capsule, sug-
gesting that Foxd1 and Tcf21 might mark early and late 
stromal cell lineages, respectively, with overlap in the stroma 
that surrounds the condensates.23 However, definitive 
co-labeling studies to address this issue have not been per-
formed. Both Tcf21 and Foxd1 are transcription factors so 
it is interesting to speculate that they might interact or regu-
late the expression of a common stromal “inducing factor.”

Retinoids secreted by the renal stroma are also recog-
nized as important for the maintenance of a high level of 
Ret receptor expression in the UB tip, promoting the pro-
liferation of UB epithelial cells and the growth of the ure-
teric tree.9,270-272 One study concluded that the defective UB 
branching seen in Foxd1-null mutants is most likely a direct 
consequence of the loss of cortical expression of Aldh1a2, a 
gene involved in retinol (vitamin A) synthesis.266 A later 
study has shown that renal stroma immediately around the 
UB tips is also important in regulating the bifurcation of the 
tips and the creation of new UB branches.273 Autocrine reti-
noid signaling in the stromal cells juxtaposed to the UB tips 
stimulates the expression of extracellular matrix 1 (Ecm1). 
Ecm1 is specifically expressed at the UB cleft, where it sup-
presses and restricts Ret expression domains within the UB 
tips. In the absence of Ecm1, Ret expression in the UB tips 

close examination of the mitotic axis of dividing cells has 
shown that lengthening of renal tubules is associated with 
mitotic orientation of cells along the tubule axis, demon-
strating intrinsic planar cell polarity.192 Dysregulation of ori-
ented cell division can give rise to cysts as a result of abnormal 
widening of tubule diameters.258 To date, molecules impli-
cated in planar cell polarity and tubule elongation include 
HNF1β-PKHD axis, Fat4, and Wnt9b.191,192,259-263

MOLECULAR GENETICS OF THE STROMAL  
CELL LINEAGE

The maintenance of reiterative ureteric branching and con-
comitant nephron induction largely accounts for the growth 
and enlargement of embryonic kidneys. Genetic studies 
reveal that interstitial stroma provides additional inductive 
cues that regulate UB branching and nephrogenesis (see 
Figure 1.15). These studies also underscore the pivotal role 
played by the stroma in establishing the stereotypical radial 
patterning of the kidney. In embryonic kidneys, the stroma 
is organized into two distinct zones, an outer stromal region 
within the nephrogenic zone expressing the winged helix 
transcription factor Foxd1/BF-2, and a deeper region 
expressing the basic helix-loop-helix transcription factor 
Tcf21 (Pod1/capsulin/epicardin).22,23,264,265 Without either 
Foxd1 or Tcf21, UB branching and nephrogenesis are 
notably impaired, resulting in a distinctive perturbation of 
the corticomedullary renal histoarchitecture.22,23,264

The most prominent features of the genetic loss of Foxd1 
include the thickening of the renal capsule and the forma-
tion of large metanephric mesenchymal condensates.22,266 
The morphologically altered renal capsule in Foxd1 mutant 
kidneys has notably lost expression of Aldh1a2/Raldh2 and 
Sfrp1 (a regulator of Wnt signaling) and is abnormally inter-
spersed with endothelial cells and Bmp4-positive cells.266 
The identity of these Bmp4-expressing cells populating the 
renal capsule in Foxd1-deficient kidneys is unknown, 
although on the basis of lineage tracing for Foxd1-promoter 
expression, the cells are clearly distinct from the presump-
tive medullary stroma. Bmp4 is a known chemotactic agent 
for endothelial cells,267 so it is very likely that the ectopic 
Bmp4-positive cells account for the presence of endothelial 
cells within the broadened renal capsule of Foxd1 mutant 
kidneys. The accumulation of the cap mesenchyme is also 
likely contributed in part by ectopic Bmp4 signaling in the 
absence of Foxd1, because Bmp4 has been shown to antago-
nize epithelialization of the cap mesenchyme.267 Transcrip-
tome analysis shows that the gene Dcn, which encodes for 
the collagen-binding proteoglycan decorin, is a specific 
target that is repressed by Foxd1 in the cortical intersti-
tium.268 Dcn expression is normally localized within the med-
ullary stroma but is normally absent in the cortical stroma 
of wild-type kidneys. In the absence of Foxd1, decorin 
becomes abundantly expressed in the presumptive cortical 
stromal region. Functional cell-culture–based assays and 
epithelialization assays of mesenchymal aggregates demon-
strate that decorin inhibits Bmp7 signaling and mesenchyme-
to-epithelial transformation. The antagonistic effect of 
decorin on epithelial differentiation is further enhanced in 
vitro when the mesenchymal aggregates are grown in col-
lagen IV, thus recapitulating the persistence of the cap mes-
enchyme as seen in Foxd1 mutant kidneys, in which both 
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colorimetrically (with a β-galactosidase substrate) or by fluo-
rescence (Figure 1.16). Use of other knock-in strains allows 
identification of endothelial cells lining arteriolar or venous 
vessels.276

Over the past decade, a number of growth factors and 
their receptors have been identified that are required for 
vasculogenesis and angiogenesis. Gene deletion studies in 
mice have shown that VEGF-A and its cognate receptor 
VEGFR2 are essential for vasculogenesis.275,277 Mice that are 
null for the Vegfa gene die at 9.5 dpc from a failure of vas-
culogenesis, whereas mice lacking a single Vegfa allele (i.e., 
they are heterozygous for the Vegfa gene) die at 11.5 dpc, 
also from vascular defects.277 These data demonstrate gene 
dosage sensitivity to VEGF-A during development. In the 
developing kidney, podocytes and renal tubular epithelial 
cells express VEGF-A and continue to express it constitu-
tively in the adult kidney, whereas the cognate tyrosine 
kinase receptors for VEGF-A, VEGFR1 (Flt1), and VEGFR2 
(Flk1/KDR) are predominantly expressed by all endothelial 
cells.278 Which non-endothelial cells might also express the 
VEGF receptors in the kidney in vivo is still debated, 
although renal cell lines clearly do and MM cells express 
VEGFR2 in organ culture as outlined earlier.

Conditional gene targeting experiments and cell-selective 
deletion of Vegfa from podocytes demonstrated that VEGF-A 
signaling is required for formation and maintenance of the 
glomerular filtration barrier.279,280 Glomerular endothelial 
cells express VEGFR2 as they migrate into the vascular cleft. 
Although a few endothelia migrated into the developing 
glomeruli of Vegfa podocyte conditional knockout mutants 
(likely because of a small amount of VEGF-A produced by 
presumptive podocytes at the S-shaped stage of glomerular 
development prior to Cre-mediated genetic deletion), the 
endothelia failed to develop fenestrations and rapidly disap-
peared, leaving capillary “ghosts” (Figure 1.17). Similar to 
the dosage sensitivity observed in the whole embryo, dele-
tion of a single Vegfa allele from podocytes also led to glo-
merular endothelial defects known as endotheliosis that 
progressed to end-stage kidney failure at 3 months of age. 
As the dose of VEGF-A decreased, the associated endothelial 
phenotypes became more severe (Figure 1.18). Upregula-
tion of the major angiogenic VEGF-A isoform (VEGFA164) 
in developing podocytes of transgenic mice led to massive 
proteinuria and collapse of the glomerular tuft by 5 days of 
age. Taken together, these results show a requirement for 

broadens, effectively attenuating UB branching through 
impaired formation of UB bifurcation clefts. Thus, stromal 
retinoids promote and confine Ret expression domains and, 
more likely, cell proliferation patterns within the UB tips.

A 2013 study has provided valuable insight into how 
stroma-based signaling intersects with UB-derived inductive 
cues to promote proper differentiation of the nephrogenic 
mesenchyme.274 When the stromal lineage is selectively 
annihilated by Foxd1-Cre–driven expression of diphtheria 
toxin, the zone of condensing mesenchymal cells capping 
the UBs is abnormally broadened but the development of 
pretubular aggregates is strongly hindered. These findings 
reiterate those previously described in Foxd1-null mice, sug-
gesting that regulation of nephrogenesis involves a crosstalk 
between stroma and UB-derived inductive signals. In par-
ticular, it was shown that Fat4-dependent Hippo signaling 
initiated by the stroma integrates with canonical Wnt signal-
ing derived from the ureteric lineage in order to balance 
nephron precursor propagation and differentiation. The 
absence of Fat4 in the stromal compartment phenocopies 
the expansion of the nephrogenic precursor domain and 
failed epithelial differentiation of nephron progenitors seen 
in stroma-deficient kidneys. It was postulated that Fat4 
acting through the Hippo pathway promotes the differentia-
tion of the epithelial transition of nephrogenic precursors. 
This possibility was further reiterated by the rescue of the 
depletion of nephrogenic precursors by Fat4 deficiency in 
Wnt9b-knockout mice. Interestingly, the ablation of Vangl2, 
a signaling partner of Fat4 known to regulate renal tubular 
diameter,259 fails to rescue the loss of nephron progenitors 
in Wnt9b-knockout animals, suggesting that Fat4-mediated 
signaling during early differentiation of nephrogenic pre-
cursors is independent of the planar cell polarity pathway.274

MOLECULAR GENETICS OF  
VASCULAR FORMATION

Vasculogenesis and angiogenesis both contribute to vascular 
development within the kidney. Endothelial cells may be 
identified through the expression of the tyrosine kinase 
receptor, VEGFR2 (Flk1/KDR).275 Reporter mouse strains 
that carry β-galactosidase (lacZ) or GFP cDNA cassettes 
“knocked into” the Vegfr2 locus permit precise snapshots of 
vessel development, because all the vascular progenitor and 
differentiated cells in these organs can be visualized either 

Figure 1.16  Developing glomeruli stained with an antibody to green fluorescent protein (GFP). Control glomerulus from a wild-type mouse. 
A, Comma-shaped body; B, S-shaped body; C, capillary loop stage; and D, mature glomeruli in the metanephros of an 18 dpc Flk1-GFP 
mouse strain. All endothelial cells express the GFP protein that is expressed under control of the endogenous Flk1/VEGFR2 promoter. (Repro-
duced with permission from the Journal of American Society of Nephrology.)
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system. The molecular basis and mechanism of dosage sen-
sitivity are unclear at present and are particularly intriguing, 
given the documented inducible regulation of VEGF-A by 
hypoxia-inducible factors (HIFs) at a transcriptional level. 
Nevertheless, it is clear that in vivo, a single Vegfa allele is 

VEGF-A for development and maintenance of the special-
ized glomerular endothelia and demonstrate a major para-
crine signaling function for VEGF-A in the glomerulus. 
Furthermore, tight regulation of the dose of VEGF-A is 
essential for proper formation of the glomerular capillary 

Figure 1.17  Top, Transmission electron micrographs of the glomerular filtration barriers from a wild-type mouse (left) and from a transgenic 
mouse with selective knockout of VEGF from the podocytes (right). Podocytes (po) are seen in both but the endothelial layer (en) is entirely 
missing from the knockout mouse, leaving a “capillary ghost.” Bottom, Immunostaining of the barriers for WT1 (podocytes/green) and PECAM 
(endothelial cells/red) confirms the absence of capillary wall in VEGF knockouts. (Adapted from Eremina V, Sood M, Haigh J, et al: Glomerular-
specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707-716, 2003.)
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Figure 1.18  Effect of vascular endothelial growth factor dose on glomerular development. Photomicrographs of glomeruli from 
mice carrying different copy numbers of the VEGF gene within podocytes. A total knockout (loss of both alleles, −/−) results in failure of 
glomerular filtration barrier formation and perinatal death. A single hypomorphic allele (hypo/−) leads to massive mesangiolysis in the first 
weeks of life and death at 3 weeks of age. Loss of one copy (+/−) results in endotheliosis (swelling of the endothelium) and death at 12 weeks 
of age. Overexpression (20-fold increase in VEGF, +++++) results in collapsing glomerulopathy. (Adapted from Eremina V et al: Role of the VEGF-A 
signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 106:32-37, 
2007.)
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