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Preface

Coronary artery disease (CAD) can cause inadequate myocardial perfusion and poor
contractility, resulting in deficient cardiac output and potential heart failure. CAD is
the leading cause of death worldwide, and by 2020, it is estimated that CAD will be
the leading cause of disease burden (e.g., direct and indirect financial cost, disability,
mortality, morbidity) worldwide. In the United States, specifically, CAD places the
most severe clinical and financial burden of the healthcare system than any other
disease conditions. Currently, over 16 million Americans have CAD, which is the
leading cause of cardiovascular death in the United States (one out of every six
deaths is caused by CAD). CAD is closely related to other conditions such as
obesity, diabetes mellitus, hypertension, and heart failure. As a result, treatment
for CAD in the United States leads to the highest cost of any disease condition (~
$100B per year). Between 2010 and 2030, the total direct medical cost of cardio-
vascular diseases is projected to triple, from $270 billion in 2010 to $800B in 2030.

The coronary circulation consists of an integrated system of complex anatomy,
mechanical properties, boundary conditions representing the hemodynamics, and
myocardial-vessel interaction, which leads to phasic patterns of coronary blood flow
into, within, and out of the myocardium. Coronary blood flow is substantially
heterogeneous spatially (throughout the myocardium) and temporally (within car-
diac cycle). These temporal and spatial heterogeneities are important physiologically
and clinically but are difficult to study at the inner layers of the myocardium, where
susceptibility to ischemia is an important clinical phenomenon. Hence, rigorous
validated models of the coronary vasculature, mechanical properties, boundary
conditions, and myocardial-vessel interaction are critical to produce realistic pre-
dictions of blood flow throughout the wall of the heart.

The biomechanics of coronary circulation is intimately related to the blood supply
of the heart (globally) as well as to the initiation of and progression of CAD (locally).
Hence, there is a significant need for understanding coronary blood flow in both
health and disease at the global and local level. This book is intended to address this
need by providing a comprehensive compendium on coronary circulation both
globally, as it relates to blood perfusion of the heart muscle, and locally at the site
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of CAD initiation and progression. Furthermore, this is the first text to provide a
distributive analysis of coronary circulation based on detailed measured vasculature
and mechanical properties. This book provides quantitative physiology of the
coronary circulation, using biomechanics to couple structure with function. It pro-
vides a detailed biomechanical synthesis of coronary circulation based on a distrib-
utive analysis of measured properties of the system (anatomy, mechanical properties,
and boundary conditions) that addresses both the global and local circulations.

This book, Coronary Circulation: Anatomy, Mechanical Properties, and Bio-
mechanics, provides a quantitative description of the coronary vasculature and
mechanical properties. A number of boundary value problems are solved to provide
analyses of coronary blood flow and stress distribution through the coronary vascu-
lature, e.g., longitudinal pressure and flow distribution, local bifurcation flow and
stress analysis, etc. The book consists of the following chapters: (1) Biomechanics,
(2) Morphometry of Coronary Vasculature, (3) Mechanical Properties and Micro-
structure of Coronary Arteries, (4) Constitutive Models of Coronary Arteries,
(5) Network Analysis of Coronary Circulation: Steady-State Flow, (6) Network
Analysis of Coronary Circulation: Pulsatile Flow, (7) Scaling Laws of Coronary
Vasculature, and (8) Local Coronary Flow and Stress Distribution.

Chapter 1 provides an overview of the basic principles of biomechanics including
terminology, approach, conservation laws, and some numerical methods of solu-
tions. It sets the framework for the biomechanical approach to understand the
function of an organ (specifically the heart) in a quantitative manner. Chapter 2
focuses on the anatomy and morphometry of the coronary vasculature. It provides
both the reductionist (reducing the system into its individual components) and
integrationist (rebuilding the system from the individual components) approaches
to understand the coronary vasculature. Chapter 3 uses the reductionist approach to
understand the material properties of the coronary vasculature; i.e., it provides the
mechanical response (or stress-strain relation) of individual segments of the coronary
vasculature. It also provides the microstructural vessel wall data that dictates the
macrostructural response of the vessels to loading. Chapter 4 uses the integrationist
approach to synthesize the constitutive relation of the vessel wall. Both phenome-
nological and microstructural constitutive laws are discussed. These mechanical
measurements and mathematical formulations connect microstructure (e.g., elastin,
collagen, ground substance, cells) to macro-mechanics (e.g., response to mechanical
load such as pressure, axial load, torsion). Chapters 5 (steady-state flow) and 6
(pulsatile flow) present network analysis of global circulation (pressure-flow rela-
tion, perfusion, etc.) including models of coronary flow regulation. Analysis of
coronary circulation is presented that includes the interaction between myocardial
contraction and coronary blood flow. Chapter 7 presents scaling laws that explain the
design of the coronary vasculature. The principles of biomechanics are used to
connect form (e.g., geometry of vasculature including diameters, lengths, numbers)
with function (e.g., blood volume, flow). Finally, Chapter 8 presents local blood flow
mechanics and the resulting vessel wall stresses (e.g., shear stresses, intramural
stresses). These analyses provide the mechanical culprits for the spatial propensity
of CAD initiation and progression.
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Biomechanics-based modelling, which couples form (i.e., the structure of coro-
nary vessels) with function (i.e., coronary perfusion), is the major theme of this
book. The mathematical models of coronary circulation are both informed and
calibrated by experimental data to minimize ad hoc assumptions. The predictions
of pressure, flow, shear stresses, and intramural stresses, among others, are also
validated against experimental data to provide confidence in the models for under-
standing coronary physiology and pathology. In order to understand local flow
patterns, the key equations representing conservation of mass, momentum, and
energy are described and applied in the context of the coronary circulatory system
as a whole, as well as regionally. The technical details (including morphometric and
mechanical data as well as mathematical analysis) are summarized in appendices for
the interested reader to avoid technical detraction from the main discussions. The
distributive models of the coronary vasculature presented are based on actual
measured anatomy and mechanical properties of the system as opposed to the
“black box™ approach of lumped models. These idealized lumped models lack the
real anatomy or mechanical properties of the system (i.e., analog circuits that do not
reflect the actual distributed vasculature or its material properties).

This book is intended for bioengineers, physiologists, cardiologists, surgeons,
and industry engineers who desire a clear understanding of coronary blood flow for
further research, diagnostics, and therapeutics. Although a balanced treatment of the
topic is attempted with numerous references to other works, there is an emphasis on
the work conducted by my research team over the past 25 years. My hope is that this
work can embrace and stimulate the next generation of scientists, bioengineers,
researchers, and clinicians to continue to contribute to this very vital area of research
to understand the coronary circulation and heart function. Moreover, a similar
biomechanical approach may be used by researchers to formulate a similarly detailed
systematic understanding of other organs and body systems.

This work would not have been possible without the dedications and tireless
efforts of numerous talented students, fellows, and collaborators over the past
25 years. The coauthors, listed on my publications in the reference section, are my
collaborators to whom I am greatly indebted. The knowledge presented in this
book would not have been possible without their tireless efforts. I would also like
to acknowledge my current team for their dedication and contributions
(in alphabetical order): Henry Chen, Huan Chen, Susy Choy, Bill Combs, Ali Dabiri,
Yaghoub Dabiri, Greg Dick, Fred Field, Lijuan Fu, Xiaomei Guo, Ling Han, Terry
Hubbard, Carlos Labarrere, Xiao Lu, Bhavesh Patel, Mengjun Wang, and Yanmin
Wang. A special thanks to Prof. Dhanjoo Ghista and Dr. Amy Spilkin for the review
and critique of the chapters and Martha Sanchez for technical assistance. Finally, I
would like to thank Merry Stuber of Springer for her constant encouragement and
commitment to this project and Maria David for shepherding this book to
publication.
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This book is dedicated to the memories of my father (Sleewa Kassab, 1934—1967)
who passed away young when I was a toddler. I hope to inspire my children (Gabriel
and Gianno) as my father’s memories and courage have inspired me.

San Diego, CA, USA Ghassan S. Kassab
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Chapter 1 ®)
Biomechanics Check or

1.1 Introduction

There is no doubt that one of the most significant health problems facing people
around the world is vascular disease that compromises perfusion of vital organs (e.g.,
heart, brain, etc.). Abnormal mechanical stresses and deformation of blood vessels
have been identified as key culprits in the initiation and progression of vascular
disease. To understand the blood circulation through blood vessels, one must
consider the blood, the blood vessel wall, the tissue surrounding the vessel wall,
the geometry of the vascular system, and the driving forces from pumping of the
heart. Blood vessels are remarkable organs that nurture organisms, transport many
enzymes and hormones, contain blood cells that flow or clot when needed, and
transport oxygen and carbon dioxide between the lungs and the cells of the tissues.
Physiologists study these important functions of the vasculature as they relate to the
functioning of the body. Bioengineers apply engineering principles to understand
biological systems. For the bioengineer, the understanding of the biomechanics of
circulation is a central focus to explain vascular health and disease.

The coronary vasculature is a complex system of millions of elastic vessel
segments of hierarchical sizes, branching patterns, branching angles; and internal
and external loading conditions within the heart muscle. A rigorous biomechanical
analysis of coronary blood flow throughout the heart muscle requires a complete
quantitative description of the 3D architecture of the coronary blood vessels, detailed
knowledge of the mechanical properties of the coronary blood vessel wall, blood
rheology, hemodynamic boundary conditions, and conservation laws (Fig. 1.1).
Such biomechanical analysis is necessary for understanding the mechanisms of
mechanical interactions between the contracting heart and the embedded elastic
coronary vasculature as the dynamics of deep myocardial wall vessels cannot be
studied experimentally at the required spatial and temporal resolution.

Stress and strain are fundamental concepts in understanding biomechanics of
coronary vasculature. Stress is related to force per area and arises from contraction of
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Inputs:
Motphometty HR, Pao(t), LVP(t), HCT,... Mechanical Properties

g

Dynamic Outputs:

Pressure, Flow, Diameter, Velocity

Fig. 1.1 Schematic of the various components of the coronary circulation including morphometry
of the coronary vasculature (microcirculatory unit is shown in the left panel stemming from the full
vasculature model), pressure—diameter (P-D) relation that describes the mechanical properties of
vessels, blood rheology (HCT hematocrit; apparent viscosity, etc.), boundary conditions (Pao aortic
pressure, LVP left ventricular pressure, HR heart rate, etc.), conservations laws (mass and momen-
tum) to yield the dynamic pressure, flow, diameter, and velocity distributions as a result of the
coronary vessel-myocardial interaction especially in the deep layers of the heart which are not
easily amenable to direct experimental observations (denoted by “?”). Courtesy of Dr. Ravi Namani

heart muscle which leads to loading forces on blood vessels such as blood pressure
and flow. Since the blood pressure and flow are applied loads, they must be resisted
or opposed by internal stresses generated in the vessel wall to maintain equilibrium
of forces. Strain refers to the amount of stretch or deformation the blood vessel
undergoes due to the applied loads (pressure and flow). Although strain can be
measured in vivo using several medical imaging techniques such as ultrasound,
X-ray, and MRI, there is no instrumentation for in vivo measurement of stresses.
Biomechanics provides a means for determining the stresses and strains in blood
vessels.

Biomechanics is broadly defined as mechanics applied to biology. Mechanics
constitutes the study of stresses and deformations in structures and motion of bodies,
while biology is the study of life (both within and around us). Hence, biomechanics
is the interface of these two large fields, which includes the study of the coronary
circulation, as well as such areas as gait analysis, rehabilitation, sports performance,
flight of birds, motion of sperm, birth labor, surgical and interventional devices,
biomaterials, plant and animal growth and remodeling, stresses in the heart wall and
limbs, prosthesis design, and invertebrate mechanics, to name just a few.
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Continuum mechanics is the study of internal reaction of an object to external
forces. External forces may consist of body forces such as gravitational and electro-
magnetic or surface forces such as normal and shear. The axioms of continuum
mechanics consist of the following: (1) Newton’s laws of physics, (2) Laws of
thermodynamics, (3) Continuum remains a continuum, (4) Existence of stress and
strain, and (5) Stress is a unique function of strain and strain rate. Continuum
mechanics is concerned with the mechanical behavior of fluids and solids on a
continuum scale, such that the physical properties of fluids and solids (e.g., material
properties, mass, density, momentum, energy) can be defined by continuous func-
tions. In the continuum model, the scale of interest is large as compared with the
characteristic dimension of the discrete constituents, e.g., tissues in an organ, cells in
a tissue, proteins in a cell. The key concepts of continuum mechanics are stress
(force/area), strain (a dimensional change) and rate-of-deformation (strain rate). The
physical laws of continuum mechanics include the stress and strain relationship in
terms of the material properties, conservation of mass, momentum, and energy. The
material properties of a continuum are mathematically described by the constitutive
equation that relates stress to strain and strain rate. The constitutive equation pro-
vides information on the material properties or constitution of the tissue. For a simple
spring, the constitute equation relates force to displacement through the spring
constant (stiffness). Biological tissues are differentiated from inanimate objects
through their unique constitutive equations which change in space (i.e., heteroge-
nous composition) and time (i.e., grow, age, and remodel) in a living organism.

Physiology is the study of the normal function of living systems (Singer, 1959).
The physiologist generally seeks to understand the relationship between structure
and function of physiological systems, ranging from the cardiovascular system to
pulmonary system, renal system to urological system, neurological to endocrine
system, and orthopedic to spinal system. Biomechanics provides the physical and
analytical tools to connect structure and function, with the major objective of
understanding problems in physiology with mathematical accuracy. In the context
of vascular mechanics, the major objective of biomechanics is to accurately deter-
mine the blood flow in the vessels, which is the major determinant of molecular,
cellular, tissue, and vessel homeostasis.

The relationship of form and function or the structure—function relation is one of
the oldest axioms in biology and medicine and it has been of great interest to many
investigators in many different organs (e.g., heart, brain, liver, kidney). One premise
of the structure—function relation is the notion of homeostasis and the major impetus
in biomechanics is motivated by the need to understand function and physiology and
subsequently patho-physiology. Biomechanics is the link between structure and
function, i.e., biomechanics uses structure along with laws of mechanics, and initial
and boundary conditions to deduce function.

Biomechanics is very relevant to vascular disease because the propensity of the
most common vascular disease (i.e., atherosclerosis) is not random but has predi-
lection to certain regions of the vascular system (DeBakey, Lawrie, & Glaeser,
1985). DeBakey and colleagues examined over 13,000 patients and classified five
major categories of atherosclerosis including category I for the coronary arteries as
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Fig. 1.2 Schematic of distribution of atherosclerosis in the vascular system including coronary
arteries in category I (left upper panel). Reproduced from DeBakey et al. (1985) with permission

v

shown in Fig. 1.2. The various categories include regions of bifurcations, curvature,
and infra-renal regions. The common biomechanical characteristics of these regions
include transient flow reversal (i.e., flow disturbances, low fluid shear, oscillatory
shear index) and high intramural stresses at regions of curvature. Biomechanics is
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necessary to understand these phenomena and to devise therapies to mitigate and
treat atherosclerosis.

This chapter outlines a basic biomechanical approach for the understanding of
coronary vascular physiology and pathology. The geometry, material properties, and
boundary conditions in conjunction with the laws of mechanics allows a precise and
quantitative description of the problem, and associated method of solution (e.g., by
employing the finite element method, computational fluid dynamics method, and
fluid—solid interaction method). We shall describe each of the components of this
approach, which will set the stage for the study of specific problems of the coronary
circulation in the subsequent chapters.

1.2 Basic Terminology in Biomechanics

Table 1.1 summarizes some common terminology used in biomechanics. The
concept of stress and strain is intimately related to force and deformation. Forces
applied to fluids cause flow, while forces applied to solids cause strain or deforma-
tion (i.e., solids resist the stresses). When external forces are applied to a vessel, it
deforms to resist the forces. It is common to use distensibility and stiffness to
describe the deformation and the resistance to deformation, respectively. Definition
of these parameters for the blood vessels can be difficult since no single parameter
can describe the complex mechanical behavior of the blood vessels. To arrive at
useful approximations typically used in physiology, it is important to understand the
basic relations between stresses (i.e., force) and strains (i.e., deformation).

1.2.1 Stress

Stress is force per unit cross-sectional area (Table 1.1 and Fig. 1.3), i.e., force per
unit area of the material on the positive side (exterior) of a vector perpendicular to the
surface exerts on the negative side (interior). On any surface, the force may be
applied either perpendicular to the surface, such as the bolus pressure (normal stress)
exerted on the wall from the blood pressure or from the surrounding tissue (e.g.,
myocardium), or parallel to the surface, such as the force exerted by the fluid flow
(shear stress) on the wall. Normal stresses may be either compressive (e.g., forces on
coronary vessels from surrounding heart muscle) or tensile (e.g., forces on heart wall
from blood pressure). A force may be applied in any direction and can induce
stresses and strains in various directions.

At any given point in the body, the state of stress is described by a stress tensor
which consists of three normal stresses and six shear stresses (three are independent).
Tensors are geometric objects that are used as the language of continuum mechanics.
Both stress and strain are tensor quantities represented by a 3 x 3 matrix with nine
components in three-dimensional (3D) space (2 x 2 in 2D). Since both stress and
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Table 1.1 Common biomechanics terms

Term

Definition

Stress

Force per unit surface area that the part lying on the positive side of a surface
element (the side on the positive side of the outer normal) exerts on the part
lying on the negative side. Stress is a tensor quantity with six independent
components. Three of the components are called normal stresses, and the
remaining three components are called shear stresses. A normal stress is
perpendicular to the surface while a shear stress is parallel to the surface.
Figure 1.3 shows an example of stresses induced in vessel wall in response to
pressures and flow

Strain

Force applied to a solid causes deformation or strain. Consider a string with
initial length L, and stretched length L. Strain is useful to describe the change
in length by dimensionless ratios such as L/L,, or (L — L,)/L,, as this eliminates
the absolute length from consideration. Elongation causes tensile (positive)
strain while shortening causes compressive (negative) strain. Figure 1.4
shows an example of strains induced in vessel wall in response to pressure and
axial force

Elastic modulus

Proportionality constant between stress and strain in given direction. For
example, Hooke’s law applies for a homogenous, isotropic, linearly elastic
material implying that in a given dimension a single elastic modulus describes
the stiffness, i.e., spring constant k. The mechanical behavior in soft biological
tissues is generally nonlinear and the elastic modulus is not constant but
depends on the load

Isotropy Materials whose mechanical properties do not depend on directions are said to
be isotropic. Biological tissues are usually anisotropic, mainly due to their
heterogeneous, layered structure

Viscoelasticity Time dependence of the response to stress or strain. Stress relaxation, creep,
and hysteresis are features of viscoelasticity

Preconditioning | In mechanical testing of living tissues in vitro, the loading and unloading
processes are repeated for a number of cycles until the stress—strain relation
becomes stabilized and repeatable results are obtained

Constitutive A constitutive equation describes the material properties of a material; e.g.,

equation the stress—strain relation. A simple example for a spring is the equation of the

form F = kx, where F is the force or stress and x is the displacement or strain
and k is the material constant

Zero-stress state

Tissue configuration where no stress is present. For a tubular organ, the zero-
stress state is obtained by making radial cuts in a ring of tissue such that it
springs open into a sector. The difference in strain between the zero-stress
state and the no-load state where all external forces are absent is called
residual strain

Plastic
deformation

Deformation that does not return to its initial state when the stress is removed

strain are symmetric tensors in the absence of external moments, the number of
independent components reduces to six in 3D (i.e., only three unique shear compo-
nents). The rows correspond to the direction of outer normal to a surface, whereas
the columns correspond to the direction of force (Fung, 1994).

In a cylindrical tube (e.g., a blood vessel), radial, circumferential, and longitudi-
nal components of stress can be defined in the respective directions. These are the
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Fluid shear

Fig. 1.3 Schematic of blood vessel under pressure, flow, and external (e.g., intramyocardial
pressure, IMP for the heart) loadings. The isotropic pressures act in all direction to induce
circumferential (zy), axial (z,), and radial (z,) stresses. The blood flow induces shear stress on the
endothelium

normal components of stress in the wall of the cylinder (Fig. 1.3). There are also
three additional shear components. In tubular organs, the major tensile stress induced
by distension is in the circumferential direction (Dobrin, 1978). During luminal
pressure loading, the equilibrium condition requires the force in the vessel wall in the
circumferential direction to be balanced by the force in the vessel lumen contributed
by the inflation pressure. Under the assumption that the vessel geometry is cylindri-
cal, it can be shown that the average circumferential wall stress is ¢ = Pr/h, where P,
r, and h are the pressure, internal radius, and wall thickness, respectively. This
formula is commonly known as Laplace’s law (see Appendix 1 for derivation)
which is applicable for thin wall vessels, such as blood vessels. This equation
explains clinical phenomenon such as why aneurysms will continue to expand
once dilated, and why rupture occurs when segments are excessively distended,
i.e., as the radius increases, the stress or tension increases which leads to further
increase in radius and so on until the failure stress is reached. Another important
implication of this equation is that the wall stress is related to pressure and the radius-
to-wall thickness ratio. It should be noted that the stress is averaged over the
thickness of the segment and does not describe the transmural distribution of stress
across the wall thickness, as in the case of a thick-walled vessel, i.e., a thick-walled
cylinder will bear the highest tensile stress on the inner surface. Furthermore,
residual strain (i.e., strain that remains in the tissue when all external loads are
removed) is often found in biological tissues as shown by a vessel segment opening
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Fig. 1.4 Schematic of | d

definition of strain in the < >
circumferential d o

(pressurized) and axial »
(elongated) directions. The I i ool sl itop i oot O
circumferential deformation P g R

can be defined as the stretch

ratio d/d,, or strain (d — d,)/ -—=
d, (Lagrangian if in -5 T @

reference to undeformed

5‘
SR
/

S
!

[

\

i 7
\

\—f

configuration) or (d — d,)/d — —
(Eulerian if in referepce to . ¢ » -
deformed configuration), ! !
etc. Similarly, the axial t+— —»
1 L]

—

L,or (L — Ly)/L, or

I
1
1
1
1
1
stretch can be defined as L/ L LO : —
1
(L — L,)/L, etc. 1
I
1
1
1
1

i4
’t-
\
\
1!
Y
A

/

into a sector when cut radially (Chap. 3), which is not considered in Laplace’s
equation.

1.2.2 Strain

Strain refers to stretch or deformation of a material and is usually expressed as a
fraction of the initial length (Lagrangian strain, &), as defined in Table 1.1 (see
Fig. 1.4 for vessel as an example). It may also be defined in terms of a stretch ratio, 4
(length divided by initial length referred to as Lagrangian), which is useful if the
material is incompressible since the product of the stretch ratios in the three principal
directions (i.e., circumferential, axial, and radial) is equal to 1. Hence, if the stretch
ratios in two directions are known, the third stretch ratio can be computed. The
relation between Lagrangian strain (¢) and stretch ratio (1) is e = 4 — 1. Alterna-
tively, strain can be defined in reference to deformed state referred to as Eulerian. In
contrast to stress, strain (Lagrangian or Eulerian) is dimensionless and the gradient in
circumferential strain is more uniform across the wall in tubular organs. The
dimensionless property of strain facilitates the comparison of various experiments.
The strain is dependent on the determination of the correct initial length which may
be uncertain since in blood vessels and other biological tissues (e.g., smooth muscle
cells of bladder), the resting length can accommodate a broad range of physiology.
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